scholarly journals Cover Feature: Coupling Long‐Range Raman with X‐Ray Photoelectron Spectroscopy for Complementary Bulk and Surface Characterization of Battery Materials (Chem. Methods 1/2022)

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Mariusz Radtke ◽  
Karl Kopp ◽  
Christian Hess
1994 ◽  
Vol 344 ◽  
Author(s):  
T. Sano ◽  
K. Akanuma ◽  
M. Tsuji ◽  
Y. Tamaura

AbstractOxygen-deficient magnetite (ODM; Fe3O4-δ, δ>0) synthesized by reduction of magnetite with H2 at 300°C decomposed CO2 to carbon with an efficiency of nearly 100% at 300°C. In this reaction, two oxygen ions of the CO2 were incorporated into the spinel structure of ODM and carbon was deposited on the surface of ODM with zero valence to form visible particles. The particles of carbon separated from ODM were studied by Raman, energy-dispersive X-ray and wave-dispersive X-ray spectroscopies. The carbon which had been deposited on the ODM was found to be a mixture of graphite and amorphous carbon in at least two levels of crystallization. X-ray photoelectron spectroscopy and X-ray diffraction patterns of the carbon-bearing magnetite (CBM) showed no indication of carbide (Fe3C) or metallic iron (α-Fe) phase formation. In the C 1s XPS spectra of the CBM, no peaks were observed which could be assigned to CO2 or CO. X-ray diffractometry, chemical analysis and TG-MS measurement showed that the carbon-bearing Ni(II)-ferrite (CBNF) (Ni(II)/Fetotal = 0.15) synthesized by the carbon deposition reaction from CO2 with the H2-reduced Ni(II)-ferrite was represented by (Ni0.28Fe2.72O4.00)1-δ (Ni2+06.9Fe2+2.31O3.00)δCτ (δ= 0.27, τ= 0.17). The carbon of the CBNF gave the CIOlayer-like oxide containing some Ni2+ ions.


2010 ◽  
Vol 53 (1) ◽  
pp. 60-63 ◽  
Author(s):  
Yeonju Park ◽  
Nam Hoon Kim ◽  
Ja Young Kim ◽  
In-Yong Eom ◽  
Yeon Uk Jeong ◽  
...  

2007 ◽  
Vol 29-30 ◽  
pp. 67-70
Author(s):  
Wei Zhang ◽  
Jim Metson ◽  
C.L. Nguyen ◽  
S. Chen

The surface characteristics of an extruded 6060 aluminium alloy were investigated with X-ray Photoelectron Spectroscopy (XPS). The results revealed that the extruded surface was covered by oxides of aluminium and magnesium. The thickness of aluminium oxide was found to change along the extrusion direction with the thinnest and thickest oxide at the beginning and end of the extrudate, respectively. Magnesium segregation was found on the surface of the extrusion with the highest and lowest Mg concentration at the beginning and end of the extrudate, respectively. This is the inverse result of that expected where increasing Mg content was believed to be associated with film instability and thicker films.


Polymer ◽  
1996 ◽  
Vol 37 (13) ◽  
pp. 2743-2749 ◽  
Author(s):  
M.R. Simmons ◽  
P.A. Chaloner ◽  
S.P. Armes ◽  
E.T. Kang ◽  
K.L. Tan ◽  
...  

2005 ◽  
Vol 277-279 ◽  
pp. 972-976
Author(s):  
Jang Hee Yoon ◽  
Yoon Bo Shim ◽  
Chae Ryong Cho ◽  
Mi Sook Won

In this study, ZnO and CuO doped zinc oxide thin films were cathodically deposited in aqueous zinc chloride solutions in the presence of oxygen on a Pt/Ti/SiO2/Si substrate through an electrochemical reaction. A mercurous sulfate electrode was used as a reference electrode and the counter electrode was a Pt spiral wire. Deposition was carried out in solutions containing Zn2+ ions introduced as ZnCl2 salt at concentrations ranging from 5.0 x 10-4 to 5.0 x 10-2 M. The bath temperatures were controlled from 65°C to 80°C. The oxygen gas was introduced from argon/oxygen mixtures allowing its partial pressure to be fixed along with its concentration in the solution. Doping of CuO was carried out in cupric nitrate or a cupric chloride/0.1M KCl solution. The influence of the Cu/Zn concentration, deposition temperature of a solution, applied cathodic potential and deposition time were optimized. After the potential was applied, the cathodic current reached a steady state within 5 min. The composition, and the characterization of the surface of the films were investigated through X-ray diffractometry, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document