scholarly journals International staging system and metaphase cytogenetic abnormalities in the era of gene expression profiling data in multiple myeloma treated with total therapy 2 and 3 protocols

Cancer ◽  
2010 ◽  
Vol 117 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Sarah Waheed ◽  
John D. Shaughnessy ◽  
Frits van Rhee ◽  
Yazan Alsayed ◽  
Bijay Nair ◽  
...  
2016 ◽  
Vol 6 (9) ◽  
pp. e471-e471 ◽  
Author(s):  
Y Jethava ◽  
A Mitchell ◽  
M Zangari ◽  
S Waheed ◽  
C Schinke ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 114-114
Author(s):  
Guido Tricot ◽  
Fenghuang Zhan ◽  
Bart Barlogie ◽  
Yongsheng Huang ◽  
Jeffrey Sawyer ◽  
...  

Abstract The International Staging System (ISS), based on B2-microglobulin and albumin levels at the time of diagnosis, has now generally been adopted as a new prognostic classification system for multiple myeloma (MM). While readily and widely applicable, ISS does not account for genetic disease features, such as metaphase (CA) and interphase fluorescence in situ hybridization (FISH) cytogenetic abnormalities, which when examined in the context of standard prognostic variables, confer higher hazards of relapse and disease-related death. Recently, gene expression profiling (GEP) uncovered the major prognostic significance for outcome of high expression of CKS1B, a gene mapping to an amplicon at chromosome 1q21. We have performed a comprehensive study of CA, FISH, GEP and ISS staging in 351 newly diagnosed MM patients, treated uniformly on Total Therapy 2. We have analyzed outcome based on a combination of high CKS1B by GEP and CA. GEP-based t(11;14) was prognostically favorable, irrespective of expression of CKS1B and, therefore, was removed from the group of patients with high CKS1B expression. After this adjustment, with the combination of both CA and high CKS1B (approximately 10% of all patients) conferred a very poor outcome with only 24% and 40% of such patients being event-free and/surviving at 3 years, compared with 72% and 84% for the others (p values : <.0001). Such patients fared poorly, irrespective of their ISS stage. Similar prognostic information could be gained by combining CA with FISH-defined amplification of 1q21 and t(11;14). Because of their major prognostic impact, all newly diagnosed patients should be tested for these genetic markers. Novel treatment modalities are justified in the small subgroup of such poor prognosis patients, since they derive only a minor benefit from advances in MM therapy. CKS1B Q4 + CA (with no CCND1) vs. Others CKS1B Q4 + CA (with no CCND1) vs. Others


Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. e148-e150 ◽  
Author(s):  
Yiming Zhou ◽  
Qing Zhang ◽  
Owen Stephens ◽  
Christoph J. Heuck ◽  
Erming Tian ◽  
...  

Abstract Cytogenetic abnormalities are important clinical parameters in various types of cancer, including multiple myeloma. We developed a model to predict cytogenetic abnormalities in patients with multiple myeloma using gene expression profiling and validated it by different cytogenetic techniques. The model has an accuracy rate up to 0.89. These results provide proof of concept for the hypothesis that gene expression profiling is a superior genomic method for clinical molecular diagnosis and/or prognosis.


Blood ◽  
2010 ◽  
Vol 115 (21) ◽  
pp. 4168-4173 ◽  
Author(s):  
Bijay Nair ◽  
Frits van Rhee ◽  
John D. Shaughnessy ◽  
Elias Anaissie ◽  
Jackie Szymonifka ◽  
...  

The Total Therapy 3 trial 2003-33 enrolled 303 newly diagnosed multiple myeloma patients and was noted to provide superior clinical outcomes compared with predecessor trial Total Therapy 2, especially in gene expression profiling (GEP)–defined low-risk disease. We report here on the results of successor trial 2006-66 with 177 patients, using bortezomib, lenalidomide, and dexamethasone maintenance for 3 years versus bortezomib, thalidomide, and dexamethasone in year 1 and thalidomide/dexamethasone in years 2 and 3 in the 2003-33 protocol. Overall survival (OS) and event-free survival (EFS) plots were super-imposable for the 2 trials, as were onset of complete response and complete response duration (CRD), regardless of GEP risk. GEP-defined high-risk designation, pertinent to 17% of patients, imparted inferior OS, EFS, and CRD in both protocols and, on multivariate analysis, was the sole adverse feature affecting OS, EFS, and CRD. Mathematical modeling of CRD in low-risk myeloma predicted a 55% cure fraction (P < .001). Despite more rapid onset and higher rate of CR than in other molecular subgroups, CRD was inferior in CCND1 without CD20 myeloma, resembling outcomes in MAF/MAFB and proliferation entities. The robustness of the GEP risk model should be exploited in clinical trials aimed at improving the notoriously poor outcome in high-risk disease.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3177-3188 ◽  
Author(s):  
George Mulligan ◽  
Constantine Mitsiades ◽  
Barb Bryant ◽  
Fenghuang Zhan ◽  
Wee J. Chng ◽  
...  

AbstractThe aims of this study were to assess the feasibility of prospective pharmacogenomics research in multicenter international clinical trials of bortezomib in multiple myeloma and to develop predictive classifiers of response and survival with bortezomib. Patients with relapsed myeloma enrolled in phase 2 and phase 3 clinical trials of bortezomib and consented to genomic analyses of pretreatment tumor samples. Bone marrow aspirates were subject to a negative-selection procedure to enrich for tumor cells, and these samples were used for gene expression profiling using DNA microarrays. Data quality and correlations with trial outcomes were assessed by multiple groups. Gene expression in this dataset was consistent with data published from a single-center study of newly diagnosed multiple myeloma. Response and survival classifiers were developed and shown to be significantly associated with outcome via testing on independent data. The survival classifier improved on the risk stratification provided by the International Staging System. Predictive models and biologic correlates of response show some specificity for bortezomib rather than dexamethasone. Informative gene expression data and genomic classifiers that predict clinical outcome can be derived from prospective clinical trials of new anticancer agents.


Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2543-2553 ◽  
Author(s):  
Annemiek Broyl ◽  
Dirk Hose ◽  
Henk Lokhorst ◽  
Yvonne de Knegt ◽  
Justine Peeters ◽  
...  

Abstract To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.


Sign in / Sign up

Export Citation Format

Share Document