Analysis of ISLET‐1, NKX2.1, PAX6, and Otp in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics

Author(s):  
Jesús M. López ◽  
Sara Jiménez ◽  
Ruth Morona ◽  
Daniel Lozano ◽  
Nerea Moreno
Keyword(s):  
Author(s):  
Elena Nikolaevna Ponomareva ◽  
Maria Mikhailovna Belaya ◽  
Alexandra Andrianovna Krasilnikova ◽  
Alexander Nickolaevich Nevalennyy

The research on the sterlet roe artificial insemination using cryopreserved sperm was carried out in the research base of the RAS Southern Scientific Centre (the Rostov region). Reproductive cells (including cryopreserved cells), larvae, sterlet fry ( Acipenser ruthenus Linnaeus, 1758) were taken as an object of research. A half of the roe (1.7 kg) taken from female starlet was inseminated by native sperm (control group); another half was inseminated by defrosted sperm of two males, which was stored in liquid nitrogen at -196ºC during 3 years (pilot group). Incubation lasted 5 days at water temperature 14.5-18.2ºC, with daily fluctuations of temperature 1.9ºC. Roe insemination in the control group made 90%, in the pilot group - 70%. Roe embryonic growth in the control group was faster, but embryogenesis duration in the pilot group met the standard time limits. Hatching prolarvae in the control group started one hour earlier, than in the pilot group; it made 75% and 60% of all incubated roe, correspondingly. Waste during the period of larvae maturing before they pass to mixed feeding was negligible - 2% in the control group and 3.4% in the pilot group. According to the test results, "open field" of reactivity of the central nervous system in the pilot group fry didn’t change from the control group fry, but more active response to stimuli was noted in the pilot group, which is very important for fry adaptation to the conditions in natural water basins. It was established that sterlet offspring obtained with use of defrosted sexual cells does not differ from the offspring obtained using native sperm and has higher morphometric characteristics. The test results prove the possibility and practicability of using sexual cells stored in liquid nitrogen for artificial restoration and formation of sturgeon fish broodstocks.


2021 ◽  
Vol 22 (7) ◽  
pp. 3577
Author(s):  
Victor Camberos ◽  
Jonathan Baio ◽  
Ana Mandujano ◽  
Aida F. Martinez ◽  
Leonard Bailey ◽  
...  

Understanding the transcriptomic impact of microgravity and the spaceflight environment is relevant for future missions in space and microgravity-based applications designed to benefit life on Earth. Here, we investigated the transcriptome of adult and neonatal cardiovascular progenitors following culture aboard the International Space Station for 30 days and compared it to the transcriptome of clonally identical cells cultured on Earth. Cardiovascular progenitors acquire a gene expression profile representative of an early-stage, dedifferentiated, stem-like state, regardless of age. Signaling pathways that support cell proliferation and survival were induced by spaceflight along with transcripts related to cell cycle re-entry, cardiovascular development, and oxidative stress. These findings contribute new insight into the multifaceted influence of reduced gravitational environments.


2020 ◽  
Vol 22 (1) ◽  
pp. 6
Author(s):  
Ievgeniia Gazo ◽  
Roman Franěk ◽  
Radek Šindelka ◽  
Ievgen Lebeda ◽  
Sahana Shivaramu ◽  
...  

DNA damage caused by exogenous or endogenous factors is a common challenge for developing fish embryos. DNA damage repair (DDR) pathways help organisms minimize adverse effects of DNA alterations. In terms of DNA repair mechanisms, sturgeons represent a particularly interesting model due to their exceptional genome plasticity. Sterlet (Acipenser ruthenus) is a relatively small species of sturgeon. The goal of this study was to assess the sensitivity of sterlet embryos to model genotoxicants (camptothecin, etoposide, and benzo[a]pyrene), and to assess DDR responses. We assessed the effects of genotoxicants on embryo survival, hatching rate, DNA fragmentation, gene expression, and phosphorylation of H2AX and ATM kinase. Exposure of sterlet embryos to 1 µM benzo[a]pyrene induced low levels of DNA damage accompanied by ATM phosphorylation and xpc gene expression. Conversely, 20 µM etoposide exposure induced DNA damage without activation of known DDR pathways. Effects of 10 nM camptothecin on embryo development were stage-specific, with early stages, before gastrulation, being most sensitive. Overall, this study provides foundational information for future investigation of sterlet DDR pathways.


Author(s):  
Victor P. Vasil'ev ◽  
Evgeniy I. Rachek ◽  
Dmitriy Yu. Amvrosov ◽  
Anna E. Barmintseva ◽  
Ekaterina D. Vasil'eva

2017 ◽  
Vol 29 (7) ◽  
pp. 1319 ◽  
Author(s):  
Olga Bondarenko ◽  
Borys Dzyuba ◽  
Marek Rodina ◽  
Jacky Cosson

The role of Ca2+ in sturgeon sperm maturation and motility was investigated. Sperm from mature male sterlets (Acipenser ruthenus) were collected from the Wolffian duct and testis 24 h after hormone induction. Testicular spermatozoa (TS) were incubated in Wolffian duct seminal fluid (WDSF) for 5 min at 20°C and were designated ‘TS after IVM’ (TSM). Sperm motility was activated in media with different ion compositions, with motility parameters analysed from standard video microscopy records. To investigate the role of calcium transport in the IVM process, IVM was performed (5 min at 20°C) in the presence of 2 mM EGTA, 100 µM Verapamil or 100 µM Tetracaine. No motility was observed in the case of TS (10 mM Tris, 25 mM NaCl, 50 mM Sucr with or without the addition of 2 mM EGTA). Both incubation of TS in WDSF and supplementation of the activation medium with Ca2+ led to sperm motility. The minimal Ca2+ concentration required for motility activation of Wolffian duct spermatozoa, TS and TSM was determined (1–2 nM for Wolffian duct spermatozoa and TSM; approximately 0.6 mM for TS). Motility was obtained after the addition of verapamil to the incubation medium during IVM, whereas the addition of EGTA completely suppressed motility, implying Ca2+ involvement in sturgeon sperm maturation. Further studies into the roles of Ca2+ transport in sturgeon sperm maturation and motility are required.


Sign in / Sign up

Export Citation Format

Share Document