Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish

1985 ◽  
Vol 238 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Walter K. Metcalfe
1973 ◽  
Vol 56 (3) ◽  
pp. 713-735 ◽  
Author(s):  
Mary Bartlett Bunge

The leading tips of elongating nerve fibers are enlarged into "growth cones" which are seen in tissue culture to continually undergo changes in conformation and to foster numerous transitory slender extensions (filopodia) and/or a veillike ruffling sheet. After explantation of 1-day-old rat superior cervical ganglia (as pieces or as individual neurons), nerve fibers and tips were photographed during growth and through the initial stages of aldehyde fixation and then relocated after embedding in plastic. Electron microscopy of serially sectioned tips revealed the following. The moving parts of the cone, the peripheral flange and filopodia, contained a distinctive apparently filamentous feltwork from which all organelles except membranous structures were excluded; microtubules were notably absent from these areas. The cone interior contained varied forms of agranular endoplasmic reticulum, vacuoles, vesicles, coated vesicles, mitochondria, microtubules, and occasional neurofilaments and polysomes. Dense-cored vesicles and lysosomal structures were also present and appeared to be formed locally, at least in part from reticulum. The possible roles of the various forms of agranular membranous components are discussed and it is suggested that structures involved in both the assembly and degradation of membrane are present in the cone. The content of these growing tips resembles that in sensory neuron growth cones studied by others.


2009 ◽  
Vol 106 (51) ◽  
pp. 21948-21953 ◽  
Author(s):  
A. Nagiel ◽  
S. H. Patel ◽  
D. Andor-Ardo ◽  
A. J. Hudspeth

Development ◽  
2000 ◽  
Vol 127 (10) ◽  
pp. 2099-2111 ◽  
Author(s):  
J. Zhang ◽  
M. Granato

En route to their targets, motor axons encounter choice points at which they select their future path. Experimental studies predict that at each choice point specialized cells provide local guidance to pathfinding motor axons, however, the identity of these cells and their signals is unknown. Here, we identify the zebrafish unplugged gene as a key component for choice point navigation of pioneering motor axons. We show that in unplugged mutant embryos, motor neuron growth cones reach the choice point but make inappropriate pathway decisions. Analysis of chimeric embryos demonstrates that unplugged activity is produced by a selective group of mesodermal cells located adjacent to the choice point. As the first motor growth cones approach the choice point, these mesodermal cells migrate away, suggesting that unplugged activity influences growth cones by a contact-independent mechanism. These data suggest that unplugged defines a somite-derived signal that elicits differential guidance decisions in motor growth cones.


2010 ◽  
Vol 8 (4) ◽  
pp. 867-876 ◽  
Author(s):  
Akemi Shibuya ◽  
Jansen Zuanon ◽  
Maria Lúcia G. de Araújo ◽  
Sho Tanaka

The relationship between the distribution of the lateral line canals and their functionality has not been well examined in elasmobranchs, especially among Neotropical freshwater stingrays of the family Potamotrygonidae. The spatial distribution of the canals and their tubules and the quantification of the neuromasts were analyzed in preserved specimens of Potamotrygon motoro, P. orbignyi, Potamotrygon sp. "cururu", and Paratrygon aiereba from the middle Negro River, Amazonas, Brazil. The hyomandibular, infraorbital, posterior lateral line, mandibular, nasal and supraorbital canals were characterized and their pores and neuromasts quantified. The ventral canals are known to facilitate the accurate localization of prey items under the body, and our results indicate that the dorsal canals may be employed in identifying the presence of predators or potential prey positioned above the stingray's body. The presence of non-pored canals in the ventral region may be compensated by the high concentration of neuromasts found in the same area, which possibly allow the accurate detection of mechanical stimuli. The concentration of non-pored canals near the mouth indicates their importance in locating and capturing prey buried in the bottom substrate, possibly aided by the presence of vesicles of Savi.


2010 ◽  
Vol 54 (8-9) ◽  
pp. 1317-1322 ◽  
Author(s):  
Alain Ghysen ◽  
Kevin Schuster ◽  
Denis Coves ◽  
Fernando de la Gandara ◽  
Nikos Papandroulakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document