scholarly journals Nuclease Degradation Analysis of DNA Nanostructures Using Gel Electrophoresis

2020 ◽  
Vol 82 (1) ◽  
Author(s):  
Arun Richard Chandrasekaran ◽  
Ken Halvorsen
2008 ◽  
Vol 18 (01) ◽  
pp. 47-61 ◽  
Author(s):  
DINAKAR RAMADURAI ◽  
TAKAYUKI YAMANAKA ◽  
MILANA VASUDEV ◽  
YANG LI ◽  
VISWANATH SANKAR ◽  
...  

The interactions of charges in DNA with the vibrational modes in DNA depend on the spectra of these vibrational modes. Using (a) the Su-Schrieffer-Heeger (SSH) Hamiltonian approach, (b) integrated structures of DNA and manmade nanostructures, and (c) gel electrophoresis techniques,1 the interaction between charges in DNA and the vibrational modes of DNA are investigated. As is well-known, DNA has a rich spectrum of modes in the THz spectral regime. The use of manmade nanostructures integrated with DNA facilitates the engineering of nanoscale systems useful in studying the role of environmental effects on the vibrational modes of DNA as well as the interaction of these modes with charge carriers in DNA. Among the DNA-based structures considered in this account are: B-DNA and Z-DNA strands related by a conformational change; and DNA molecules bound on one terminal to indirect bandgap semiconductor quantum dots. Gel electrophoresis is used as a tool for the analysis of carrier interactions in novel integrated DNA-manmade-nanostructure complexes, and models based on the SSH Hamiltonian2 are employed as a means of analyzing the interactions between the vibrational modes of DNA and charge carriers in DNA.3-4


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Nandhini Ponnuswamy ◽  
Maartje M. C. Bastings ◽  
Bhavik Nathwani ◽  
Ju Hee Ryu ◽  
Leo Y. T. Chou ◽  
...  

Author(s):  
G. L. Brown

Bismuth (Bi) stains nucleoproteins (NPs) by interacting with available amino and primary phosphate groups. These two staining mechanisms are distinguishable by glutaraldehyde crosslinking (Fig. 1,2).Isolated mouse liver nuclei, extracted with salt and acid solutions, fixed in either formaldehyde (form.) or gl utaraldehyde (glut.) and stained with Bi, were viewed to determine the effect of the extractions on Bi stainina. Solubilized NPs were analyzed by SDS-polyacrylamide gel electrophoresis.Extraction with 0.14 M salt does not change the Bi staining characteristics (Fig. 3). 0.34 M salt reduces nucleolar (Nu) staining but has no effect on interchromatinic (IC) staining (Fig. 4). Proteins responsible for Nu and glut.- insensitive IC staining are removed when nuclei are extracted with 0.6 M salt (Fig. 5, 6). Low salt and acid extraction prevents Bi-Nu staining but has no effect on IC staining (Fig. 7). When nuclei are extracted with 0.6 M salt followed by low salt and acid, all Bi-staining components are removed (Fig. 8).


Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


Sign in / Sign up

Export Citation Format

Share Document