scholarly journals Economic optimum plant density of sweet corn does not increase root lodging incidence

Crop Science ◽  
2021 ◽  
Author(s):  
Martin Williams ◽  
Nicholas Hausman ◽  
Daljeet Dhaliwal ◽  
Tony Grift ◽  
Martin Bohn
2012 ◽  
pp. 105-110
Author(s):  
Ádám Lente

In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.


2011 ◽  
pp. 105-108
Author(s):  
Ádám Lente

The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at the Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem  soils.


2013 ◽  
Vol 138 (6) ◽  
pp. 461-469 ◽  
Author(s):  
Reid R. Rice ◽  
William F. Tracy

Excellent table quality is an essential characteristic of commercial sweet corn (Zea mays) and commonly held paramount as a selection criterion. As a consequence, breeding for improved agronomic performance in sweet corn has been limited in comparison with United States dent corn breeding efforts. The narrowness of genetic diversity within modern sweet corn germplasm suggests potential exists for yield enhancement through new heterotic combinations and introgression of sources of improved agronomic performance. The objective of this study was to examine the results of incorporating nonsweet germplasm in the development of improved temperate sweet corn cultivars. Five inbreds derived from crosses between nonsweet germplasm and temperate supersweet (shrunken2, sh2) inbreds were crossed with three temperate sh2 testers to make 15 experimental hybrids. The hybrids were evaluated in four environments with three replications per environments. Experimental entry Wh04038V × Tester2 yielded 18.1 Mg·ha−1 in 2009 and 16.6 Mg·ha−1 in 2010, significantly out-yielding the top producing commercial control, ‘Overland’, in both years. An additional six entries derived from exotic-by-temperate crosses yielded significantly more than all commercial checks in 2009. Four specific experimental entries consistently exhibited superior resistance to root lodging, northern corn leaf blight (Exserohilum turcicum), and Maize dwarf mosaic virus (MDMV) compared with ‘Marvel’ and ‘Supersweet Jubilee Plus’. Ten of the 15 experimental entries exhibited similar quality for flavor relative to ‘Marvel’ and ‘Overland’, however ‘Supersweet Jubilee Plus’ outperformed all entries for both flavor and tenderness, suggesting that while incorporation of nonsweet germplasm in sweet corn breeding programs may provide valuable contributions for yield and agronomic performance, flavor and tenderness must be carefully regarded.


2010 ◽  
pp. 77-81
Author(s):  
Ádám Lente

Three agrotechnical factors (sowing time, fertilization, plant density) and the effect of two different genotypes on the yields of sweet corn was studied, in the dry and warm crop-year of 2009 on a chernozem soil in the County of Hajdúság. The experiments were carried out on the Látókép Research Station of Debrecen University. The experiment involved two sowing times (21 of April and 19 of May), six fertilizer levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two genotypes (Jumbo, Enterprise). Four plant density levels, 45 thousand ha-1, 55 thousand ha-1, 65 thousand ha-1 and 75 thousand ha-1 were used. In the early sowing time the highest yield was obtained with 65 thousand ha-1 plant density level and N120+PK treatment of Jumbo (18169 kg ha-1), while the maximum yield of Enterprise was 17818 kg ha-1 with 75 thousand ha-1 plant density level and N90+PK dose. In case of the late sowing time both hybrids gave the highest yield with 75 thousand ha-1 plant density level and N30 +PKtreatment, with a crop yield of 13143 kg ha-1 (Jumbo) and 14324 kg ha-1, ( Enterprise). 


2012 ◽  
pp. 105-110
Author(s):  
Ádám Lente

The effect of nutrient-supply (control, N120+PK) and two different genotypes on the physiologic properties of sweet corn has been investigated in the crop-year of 2011 on chernozem soil in the Hajdúság region. The experiments were carried out at the Experimental Station of the University of Debrecen in Debrecen-Látókép. The experiment was sewn in two different sowing times: the 21st April can be considered as an early, while the 19th May as a late sowing time. The two involved hybrids were Jumbo and Enterprise. The applied plant density was 65 000 plants per hectare.Our aim with this experiment was to study the plant production, just as the main affecting factors of its development and dynamics, like nutrient-supply and genotypes. We aimed to study and analyse the relationships between these factors and plant production. In this study following parameters were measured and calculated: photosynthetic activity, chlorophyll-content (SPAD-value), leaf area index (LAI) and leaf area duration (LAD). Regarding the analysis of photosynthetic activity values no obvious relationship between the measured values and the applied hybrids, just as nutrient-supply has been revealed. Analysing the SPAD-values it can be stated that the chlorophyll-content of the measured leaves showed an increasing tendency due to the nutrient-supply. The highest values have been measured in the intensive cob development phase of the early sowing time plots.Regarding the LAI-values we have found significant differences between the fertilizer treatments in both sowing time treatments. In case of the leaf area duration values – that is derived from the LAI values – nutrient-supply has positively affected the duration of the assimilation area.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 478E-478 ◽  
Author(s):  
Xiuming Hao

In summer 1998, two sh2, fresh-market, sweet corn cultivars (`Candy Corner'—large plant size, and `Swifty'—small plant size) were grown at 5, 6.5, 8, and 9.5 plants/m2 to investigate the effects of plant density on growth, photosynthesis, biomass, yield, and quality. Biomass and leaf area per plant were not affected by plant density. Therefore, biomass and leaf area per unit area were increased with increasing plant density. Plant height, leaf chlorophyll, leaf photosynthesis, and transpiration (measured with the LI-COR 6400 portable photosynthesis system) were not affected by plant density. Total cob weight (husk off) and number of ears harvested from plants were increased with increasing plant density. However, marketable yield (number of marketable ears) was not affected by plant density and marketable cob weight (husk off) decreased with increasing plant density due to the reduction in ear size with high plant density. There was a significant increase in percentage of unmarketable ears at plant density higher than 6.5 plant/m2 with `Candy Corner'. Kernel sugar content (°Brix) in both cultivars increased with plant density. According to the results of this experiment, the optimum plant density for fresh-market sweet corn was 5 to 6 plants/m 2.


Sign in / Sign up

Export Citation Format

Share Document