D ‐ribose‐L ‐cysteine enhances memory task, attenuates oxidative stress and acetyl‐cholinesterase activity in scopolamine amnesic mice

2020 ◽  
Vol 81 (5) ◽  
pp. 620-627
Author(s):  
Osagie Emokpae ◽  
Benneth Ben‐Azu ◽  
Abayomi M. Ajayi ◽  
Solomon Umukoro
2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Ricardo Christ ◽  
Aleksandro Schafer Da Silva ◽  
Mateus Eloir Grabriel ◽  
Luan Cleber Henker ◽  
Renan Augusto Cechin ◽  
...  

  Background: Nitrate and nitrite poisoning is associated with pasture intake that has high nitrate levels and leads to acute methemoglobinemia. Pasture may accumulate nitrate under certain conditions, such as excessively fertilized soil or en­vironmental conditions that enhance the N absorption (rain preceded by a period of drought). After ingestion of plants, this substrate reaches the rumen and, in physiological conditions, is reduced to nitrite and afterward to ammonia. The aim of this study was to evaluate changes in cholinesterase activities and oxidative stress caused by subclinical poisoning for nitrate and nitrite in cattle fed with Pennisetum glaucum in three different fertilization schemes. Materials, Methods & Results: In order to perform the experimental poisoning, the pasture was cultivated in three dif­ferent paddocks: with nitrogen topdressing (urea; group 1), organic fertilizer (group 2) or without fertilizer (group 3; control). Nitrate accumulation in forage was evaluated by the diphenylamine test. After food fasting of 12 h, nine bovine were randomly allocated to one of the experimental groups and fed with fresh forage (ad libitum) from respective pad­dock. In different time points from beginning of pasture intake (0, 2, 4, 6 and 9 h) heart rate and respiratory frequency were assessed, as well as mucous membrane color and behavioral changes. Blood samples from jugular vein into vials with and without anticoagulant were collected. From blood samples, serum nitrite levels, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme activity were evaluated, as well as oxidative stress through the following param­eters: levels of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS), beyond the antioxidant system by enzyme activity measurement of catalase (CAT) and superoxide dismutase (SOD). The diphenylamine test was positive to group 1 and 2, so that the pasture presented 3.16 mg/kg, 2.98 mg/kg and 1.67 mg/kg of nitrate for group 1, 2 and 3, respectively. In addition, cows from group 1 demonstrated increased (P < 0.05) nitrite levels in serum, compared to other groups, and greater heart rate after 9 h (P < 0.05). The AChE and BChE activity in group 1 showed significant increase (P < 0.05) at 4 and 6 h (AChE), and 4 and 9 h (BChE) compared to group 3. Also, NOx levels were lower at 6 and 9 h (P < 0.05) and at 9 h (P < 0.05) for animals of group 1 and 2, respectively, when compared to group 3. Furthermore, in the group 1 levels of ROS and TBARS were significantly higher (P < 0.05) after 2 and 4 h, and 6 and 9 h compared to other groups, respectively. The CAT activity increased significantly (P < 0.05) with 2 and 4 h of the experiment, but on the other hand, decreased at 6 and 9 h in group 1. Nevertheless, the animals from group 2 presented only a significant reduction in this enzyme activity at 9 h. Furthermore, SOD activity was reduced in animals of groups 1 (P < 0.05) at 4, 6 and 9 h, compared to other groups. Discussion: It was concluded that the nitrate and nitrite poisoning by pasture intake cultivated and fertilized with urea leads to increased levels of serum nitrite, as well as the cholinesterase activity and causes oxidative stress in cattle. It is conjectured that the cholinesterase activity and oxidative stress may assist in understanding the pathophysiology of changes caused by poisoning.Keywords: plant toxicology, poisoning, methemoglobin, cholinergic system, oxidative stress.


Author(s):  
Devi N. P. ◽  
J. K. Mukkadan

<p><strong>Objective</strong>:<strong> </strong>To find out the effect of rotatory vestibular stimulation in cognition in rats through examining the behavioural patterns, the alterations in dendritic arborization and changes in AChE activity.</p><p><strong>Methods</strong>:<strong> </strong>Rotatory vestibular stimulation was provided in a rotatory vestibular apparatus at a rate of 50 rpm for 5 min, for 30 d for rats. 0.3 mg/kg of physostigmine also administered to rats of another group as a standard drug. No rotatory vestibular stimulation or physostigmine is provided to the control rats. Behavioural analysis, Neuromorphological and biochemical studies were done after vestibular stimulation.</p><p><strong>Results</strong>:<strong> </strong>No. of trails for acquisition and retention reduced significantly in treated rats when compared with the control rats. In all the treated rats the dendritic arborization increased significantly, and activity of AChE decreased significantly when compare with the control.</p><p><strong>Conclusion</strong>:<strong> </strong>Rotatory vestibular stimulation enhances learning and memory <em>via</em> increasing dendritic arborization and inhibiting acetyl-cholinesterase activity in rats. </p>


2013 ◽  
Vol 634-638 ◽  
pp. 1225-1228 ◽  
Author(s):  
Fei Zhang ◽  
Hai Wei Ren ◽  
Yong Gang Wang ◽  
Rong Wang ◽  
Jie Sheng

A significant acetylcholinesterase inhibitory activity was observed for the Ethanolic extract from the leaves of Calophyllum polyanthum by using TLC bioautographic method. Further bioassay-guided isolation of this extract using TLC bioautographic method resulted in obtaining a pyranochromanone, apetalic acid (1). The structure of 1 was identified by comparison of it’s spectral characteristics with previous reports. The concentration required for 50% inhibition of 1 was 0.95 mM, determined by a microplate assay. The anti-acetylcholinesterase aity of compound 1 was weak, but it was the first pyranochromanone which have anti-acetyl cholinesterase activity. As a new leading compound, it can be modified and transformed to obtain more potently active compounds.


Author(s):  
Melappa Govindappa ◽  
V. Thanuja ◽  
S. Tejashree ◽  
C.A. Soukhya ◽  
Suresh Barge ◽  
...  

The present work was aimed to identify phytochemicals in C. uredinicola methanol extract from qualitative, TLC and GC-MS method and evaluated for antioxidant, anti-HIV, anti-diabetes, anti-cholinesterase activity in vitro and in silico. The C. uredinicola extract showed flavonoids, tannins, alkaloids, glycosides, phenols, terpenoids, and coumarins presence in qualitative method. From GC-MS analysis, identified seven different phytochemicals and out of seven, four (coumarin, coumarilic acid, hymecromone, alloisoimperatorin) are coumarins. The C. uredinicola extract have shown significant antioxidant activity in DPPH (73) and FRAP (1359) method. The HIV-1 RT (83.81+2.14), gp 120 (80.24+2.31), integrase (79.43+3.14) and protease (77.63+2.14), DPPIV, β-glucosidase and acetyl cholinesterase activity was significantly reduced by the extract. The 2-diphenylmethyleneamino methyl ester had shown significant interaction with oxidant and HIV-1 proteins whereas alloisoimperatorin have interacted with diabetes and cholinesterase proteins followed by hymecromone with high binding energy. These three phytochemicals are non-carcinogens, non-toxic, readily degradable and have drug likeliness properties. The C. uredinicola phytochemicals are responsible for management of diabetes, HIV-1 and Alzheimer. Further in vivo work is needed to justify our research.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Rui Wu ◽  
Shaoqi Zhong ◽  
Mengmei Ni ◽  
Xuejiao Zhu ◽  
Yiyi Chen ◽  
...  

Background. The fruits of Malania oleifera Chun & S. K. Lee have been highly sought after medically because its seeds have high oil content (>60%), especially the highest known proportion of nervonic acid (>55%). Objective of the Study. The objective was to explore the effects of different doses of Malania oleifera Chun oil (MOC oil) on the learning and memory of mice and to evaluate whether additional DHA algae oil and vitamin E could help MOC oil improve learning and memory and its possible mechanisms. Methods. After 30 days of oral administration of the relevant agents to mice, behavioral tests were conducted as well as detection of oxidative stress parameters (superoxide dismutase, malondialdehyde, and glutathione peroxidase) and biochemical indicators (acetylcholine, acetyl cholinesterase, and choline acetyltransferase) in the hippocampus. Results. Experimental results demonstrated that MOC oil treatment could markedly improve learning and memory of mouse models in behavioral experiments and increase the activity of GSH-PX in hippocampus and reduce the content of MDA, especially the dose of 46.27 mg/kg. The addition of DHA and VE could better assist MOC oil to improve the learning and memory, and its mechanism may be related to the inhibition of oxidative stress and restrain the activity of AChE and also increase the content of ACh. Conclusion. Our results demonstrated that MOC oil treatment could improve learning and memory impairments. Therefore, we suggest that MOC oil is a potentially important resource for the development of nervonic acid products.


2020 ◽  
pp. 1-17 ◽  
Author(s):  
Sethuraman Sathya ◽  
Boovaragamoorthy Gowri Manogari ◽  
Kaliannan Thamaraiselvi ◽  
Sethuraman Vaidevi ◽  
Kandasamy Ruckmani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document