Speech perception as a window for understanding plasticity and commitment in language systems of the brain

2005 ◽  
Vol 46 (3) ◽  
pp. 233-251 ◽  
Author(s):  
Janet F. Werker ◽  
Richard C. Tees
Keyword(s):  
2019 ◽  
pp. 105-112
Author(s):  
Risto Näätänen ◽  
Teija Kujala ◽  
Gregory Light

This chapter shows that MMN and its magnetoencephalographic (MEG) equivalent MMNm are sensitive indices of aging-related perceptual and cognitive decline. Importantly, the age-related neural changes are associated with a decrease of general brain plasticity, i.e. that of the ability of the brain to form and maintain sensory-memory traces, a necessary basis for veridical perception and appropriate cognitive brain function. MMN/MMNm to change in stimulus duration is particularly affected by aging, suggesting the increased vulnerability of temporal processing to brain aging and accounting, for instance, for a large part of speech-perception difficulties of the aged beyond the age-related peripheral hearing loss.


2020 ◽  
Vol 6 (30) ◽  
pp. eaba7830
Author(s):  
Laurianne Cabrera ◽  
Judit Gervain

Speech perception is constrained by auditory processing. Although at birth infants have an immature auditory system and limited language experience, they show remarkable speech perception skills. To assess neonates’ ability to process the complex acoustic cues of speech, we combined near-infrared spectroscopy (NIRS) and electroencephalography (EEG) to measure brain responses to syllables differing in consonants. The syllables were presented in three conditions preserving (i) original temporal modulations of speech [both amplitude modulation (AM) and frequency modulation (FM)], (ii) both fast and slow AM, but not FM, or (iii) only the slowest AM (<8 Hz). EEG responses indicate that neonates can encode consonants in all conditions, even without the fast temporal modulations, similarly to adults. Yet, the fast and slow AM activate different neural areas, as shown by NIRS. Thus, the immature human brain is already able to decompose the acoustic components of speech, laying the foundations of language learning.


2014 ◽  
Vol 369 (1651) ◽  
pp. 20130297 ◽  
Author(s):  
Jeremy I. Skipper

What do we hear when someone speaks and what does auditory cortex (AC) do with that sound? Given how meaningful speech is, it might be hypothesized that AC is most active when other people talk so that their productions get decoded. Here, neuroimaging meta-analyses show the opposite: AC is least active and sometimes deactivated when participants listened to meaningful speech compared to less meaningful sounds. Results are explained by an active hypothesis-and-test mechanism where speech production (SP) regions are neurally re-used to predict auditory objects associated with available context. By this model, more AC activity for less meaningful sounds occurs because predictions are less successful from context, requiring further hypotheses be tested. This also explains the large overlap of AC co-activity for less meaningful sounds with meta-analyses of SP. An experiment showed a similar pattern of results for non-verbal context. Specifically, words produced less activity in AC and SP regions when preceded by co-speech gestures that visually described those words compared to those words without gestures. Results collectively suggest that what we ‘hear’ during real-world speech perception may come more from the brain than our ears and that the function of AC is to confirm or deny internal predictions about the identity of sounds.


2000 ◽  
Vol 23 (3) ◽  
pp. 332-333 ◽  
Author(s):  
Stephen Grossberg

The brain contains ubiquitous reciprocal bottom-up and top-down intercortical and thalamocortical pathways. These resonating feedback pathways may be essential for stable learning of speech and language codes and for context-sensitive selection and completion of noisy speech sounds and word groupings. Context-sensitive speech data, notably interword backward effects in time, have been quantitatively modeled using these concepts but not with purely feedforward models.


2020 ◽  
Vol 28 (8) ◽  
pp. 1273
Author(s):  
Yu CHEN ◽  
Licheng MO ◽  
Rong BI ◽  
Dandan ZHANG

2021 ◽  
pp. 1-62
Author(s):  
Orsolya B Kolozsvári ◽  
Weiyong Xu ◽  
Georgia Gerike ◽  
Tiina Parviainen ◽  
Lea Nieminen ◽  
...  

Speech perception is dynamic and shows changes across development. In parallel, functional differences in brain development over time have been well documented and these differences may interact with changes in speech perception during infancy and childhood. Further, there is evidence that the two hemispheres contribute unequally to speech segmentation at the sentence and phonemic levels. To disentangle those contributions, we studied the cortical tracking of various sized units of speech that are crucial for spoken language processing in children (4.7-9.3 year-olds, N=34) and adults (N=19). We measured participants’ magnetoencephalogram (MEG) responses to syllables, words and sentences, calculated the coherence between the speech signal and MEG responses at the level of words and sentences, and further examined auditory evoked responses to syllables. Age-related differences were found for coherence values at the delta and theta frequency bands. Both frequency bands showed an effect of stimulus type, although this was attributed to the length of the stimulus and not linguistic unit size. There was no difference between hemispheres at the source level either in coherence values for word or sentence processing or in evoked response to syllables. Results highlight the importance of the lower frequencies for speech tracking in the brain across different lexical units. Further, stimulus length affects the speech-brain associations suggesting methodological approaches should be selected carefully when studying speech envelope processing at the neural level. Speech tracking in the brain seems decoupled from more general maturation of the auditory cortex.


2020 ◽  
Vol 117 (51) ◽  
pp. 32791-32798
Author(s):  
Chris Scholes ◽  
Jeremy I. Skipper ◽  
Alan Johnston

It is well established that speech perception is improved when we are able to see the speaker talking along with hearing their voice, especially when the speech is noisy. While we have a good understanding of where speech integration occurs in the brain, it is unclear how visual and auditory cues are combined to improve speech perception. One suggestion is that integration can occur as both visual and auditory cues arise from a common generator: the vocal tract. Here, we investigate whether facial and vocal tract movements are linked during speech production by comparing videos of the face and fast magnetic resonance (MR) image sequences of the vocal tract. The joint variation in the face and vocal tract was extracted using an application of principal components analysis (PCA), and we demonstrate that MR image sequences can be reconstructed with high fidelity using only the facial video and PCA. Reconstruction fidelity was significantly higher when images from the two sequences corresponded in time, and including implicit temporal information by combining contiguous frames also led to a significant increase in fidelity. A “Bubbles” technique was used to identify which areas of the face were important for recovering information about the vocal tract, and vice versa,on a frame-by-frame basis. Our data reveal that there is sufficient information in the face to recover vocal tract shape during speech. In addition, the facial and vocal tract regions that are important for reconstruction are those that are used to generate the acoustic speech signal.


2021 ◽  
Author(s):  
Jana Van Canneyt ◽  
Marlies Gillis ◽  
Jonas Vanthornhout ◽  
Tom Francart

The neural tracking framework enables the analysis of neural responses (EEG) to continuous natural speech, e.g., a story or a podcast. This allows for objective investigation of a range of auditory and linguistic processes in the brain during natural speech perception. This approach is more ecologically valid than traditional auditory evoked responses and has great potential for both research and clinical applications. In this article, we review the neural tracking framework and highlight three prominent examples of neural tracking analyses. This includes the neural tracking of the fundamental frequency of the voice (f0), the speech envelope and linguistic features. Each of these analyses provides a unique point of view into the hierarchical stages of speech processing in the human brain. f0-tracking assesses the encoding of fine temporal information in the early stages of the auditory pathway, i.e. from the auditory periphery up to early processing in the primary auditory cortex. This fundamental processing in (mostly) subcortical stages forms the foundation of speech perception in the cortex. Envelope tracking reflects bottom-up and top-down speech-related processes in the auditory cortex, and is likely necessary but not sufficient for speech intelligibility. To study neural processes more directly related to speech intelligibility, neural tracking of linguistic features can be used. This analysis focuses on the encoding of linguistic features (e.g. word or phoneme surprisal) in the brain. Together these analyses form a multi-faceted and time-effective objective assessment of the auditory and linguistic processing of an individual.


Sign in / Sign up

Export Citation Format

Share Document