scholarly journals Epigenetic population differentiation in field- and common garden-grownScabiosa columbariaplants

2018 ◽  
Vol 8 (6) ◽  
pp. 3505-3517 ◽  
Author(s):  
Maartje P. Groot ◽  
Niels Wagemaker ◽  
N. Joop Ouborg ◽  
Koen J. F. Verhoeven ◽  
Philippine Vergeer
2020 ◽  
Vol 12 (3) ◽  
pp. 1188 ◽  
Author(s):  
Yahuza Lurwanu ◽  
Yan-Ping Wang ◽  
Waheed Abdul ◽  
Jiasui Zhan ◽  
Li-Na Yang

Fungicide is one of the main approaches used in agriculture to manage plant diseases for food production, but their effectiveness can be reduced due to the evolution of plant pathogens. Understanding the genetics and evolutionary processes responsible for the development of fungicide resistance is a key to food production and social sustainability. In this study, we used a common garden experiment to examine the source of genetic variation, natural selection, and temperature contributing to the development of azoxystrobin resistance in Phytophthora infestans and infer sustainable ways of plant disease management in future. We found that plasticity contributed to ~40% of phenotypic variation in azoxystrobin sensitivity while heritability accounted for 16%. Further analysis indicated that overall population differentiation in azoxystrobin sensitivity (QST) was significantly greater than the overall population differentiation in simple sequence repeat (SSR) marker (FST), and the P. infestans isolates demonstrated higher level of azoxystrobin sensitivity at the higher experimental temperature. These results suggest that changes in target gene expression, enzymatic activity, or metabolic rate of P. infestans play a more important role in the adaptation of the pathogen to azoxystrobin resistance than that of mutations in target genes. The development of azoxystrobin resistance in P. infestans is likely driven by diversifying selection for local adaptation, and elevated temperature associated with global warming in the future may increase the effectiveness of using azoxystrobin to manage P. infestans. The sustainable approaches for increasing disease control effectiveness and minimizing the erosion of the fungicide efficacy are proposed.


2014 ◽  
Author(s):  
Emanuel Heitlinger ◽  
Horst H. Taraschewski ◽  
Urszula Weclawski ◽  
Karim Gharbi ◽  
Mark Blaxter

Anguillicola crassus is a swim bladder nematode of eels. The parasite is native to the Asian eel Anguilla japonica, but was introduced to Europe and the European eel Anguilla anguilla in the early 1980s. A Taiwanese source has been proposed for this introduction. In the new host in the recipient area, the parasite appears to be more pathogenic. As a reason for these differences, genetically fixed differences in infectivity and development between Taiwanese and European A.crassus have been described and disentangled from plasticity induced by different host environments.To explore whether transcriptional regulation is involved in these lifecycle differences, we have analysed a “common garden”, cross infection experiment, using deep-sequencing transcriptomics. Surprisingly, in the face of clear phenotypic differences in life history traits, we identified no significant differences in gene expression between parasite populations or between experimental host species. From 120,000 SNPs identified in the transcriptome data we found that European A. crassus were not a genetic subset of the Taiwanese nematodes sampled. The loci that have the major contribution to the European-Taiwanese population differentiation show an enrichment of synonymous and non-coding polymorphism. This argues against positive selection in population differentiation. However, genes involved in protein processing in the endoplasmatic reticulum membrane and genes bearing secretion signal sequences were enriched in the set of genes most differentiated between European and Taiwanese A. crassus. These genes could be a source for the phenotypically visible genetically fixed differences between European and Taiwanese A. crassus.


2014 ◽  
Author(s):  
Emanuel Heitlinger ◽  
Horst H. Taraschewski ◽  
Urszula Weclawski ◽  
Karim Gharbi ◽  
Mark Blaxter

Anguillicola crassus is a swim bladder nematode of eels. The parasite is native to the Asian eel Anguilla japonica, but was introduced to Europe and the European eel Anguilla anguilla in the early 1980s. A Taiwanese source has been proposed for this introduction. In the new host in the recipient area, the parasite appears to be more pathogenic. As a reason for these differences, genetically fixed differences in infectivity and development between Taiwanese and European A.crassus have been described and disentangled from plasticity induced by different host environments.To explore whether transcriptional regulation is involved in these lifecycle differences, we have analysed a “common garden”, cross infection experiment, using deep-sequencing transcriptomics. Surprisingly, in the face of clear phenotypic differences in life history traits, we identified no significant differences in gene expression between parasite populations or between experimental host species. From 120,000 SNPs identified in the transcriptome data we found that European A. crassus were not a genetic subset of the Taiwanese nematodes sampled. The loci that have the major contribution to the European-Taiwanese population differentiation show an enrichment of synonymous and non-coding polymorphism. This argues against positive selection in population differentiation. However, genes involved in protein processing in the endoplasmatic reticulum membrane and genes bearing secretion signal sequences were enriched in the set of genes most differentiated between European and Taiwanese A. crassus. These genes could be a source for the phenotypically visible genetically fixed differences between European and Taiwanese A. crassus.


AoB Plants ◽  
2021 ◽  
Author(s):  
F Xavier Picó ◽  
Mohamed Abdelaziz ◽  
Antonio R Castilla

Abstract Population differentiation is a pervasive process in nature. At present, evolutionary studies on plant population differentiation address key questions by undertaking joint ecological and genetic approaches and employing a combination of molecular and experimental means. In this special issue, we gathered a collection of papers dealing with various ecological and genetic aspects of population differentiation in plants. In particular, this special issue encompasses eight research articles and two reviews covering a wide array of worldwide environments, plant functional types, genetic and genomic approaches, and common garden experiments to quantify molecular and/or quantitative trait differentiation in plant populations. Overall, this special issue stresses the validity of traditional evolutionary studies focused on plant populations, whilst emphasizing the integration of classical biological disciplines and state-of-the-art molecular techniques into a unique toolkit for evolutionary plant research.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb235002
Author(s):  
Anita Liparoto ◽  
Daniele Canestrelli ◽  
Roberta Bisconti ◽  
Claudio Carere ◽  
David Costantini

ABSTRACTRegulation of oxidative status plays a substantial role in physiological ageing. However, we know little about age-related changes of oxidative status in wild animals, and even less about the role of population history in moulding ageing rates. We addressed these questions by means of a common garden experiment, using the Tyrrhenian tree frog Hyla sarda as the study species. This species underwent a range expansion from northern Sardinia (source) up to Corsica (newly founded) during the Late Pleistocene, and then the two populations became geographically isolated. We found that, at the beginning of the experiment, Sardinian and Corsican frogs had similar concentrations of all oxidative status markers analysed. One year later, Corsican frogs had higher oxidative stress and suffered higher mortality than Sardinian frogs. Our results suggest the intriguing scenario that population differentiation in rates of physiological ageing owing to oxidative stress might be an overlooked legacy of past biogeographic processes.


2020 ◽  
Author(s):  
N Beindorff ◽  
D Messroghli ◽  
JF Eary ◽  
W Brenner
Keyword(s):  

Author(s):  
Aparna . Veluru ◽  
Kanwar P. Singh ◽  
Namita . . ◽  
Sapna . Panwar ◽  
Gayacharan . . ◽  
...  

Roses are the most important commercial ornamental plants grown for flowers, perfumery and nutraceutical compounds. Commercially cultivated roses (Rosa × hybrida L.) are complex interspecific hybrids probably derived from 8-10 wild species among the large diversity of 130-200 species in genus Rosa. Wild germplasm is a primary source of variability and plays a major role in improving existing varieties by broadening their genetic base. In the present investigation, we have utilized the previously identified SSR primers for studying the diversity among 148 selected rose genotypes, including wild species and cultivated varieties of Indian and exotic origin. A total of 88 alleles was scored using 30 polymorphic loci; they produced average 2.9±1 alleles per locus. Polymorphism information content (PIC) values for different SSR loci ranged from 0.08 to 0.8 with a mean value of 0.5±0.2. The neighbor-joining tree generated based on Nei’s (1978) genetic distance values grouped the population into three major clusters. Cluster-I and II consists of all modern rose cultivars (Rosa × hybrida L.) originated from India and cluster-III consists of all exotic cultivars, wild species and a few cultivars from India. STRUCTURE analysis based on microsatellite allelic data, partitioned the total rose genotypes into four different sub-populations with some individual genotypes having genomic admixture. Population subdivision estimates, FST between different subpopulations ranged from 0.01-0.15 indicates low to moderate level of divergence existing among the rose cultivars and germplasm. Population differentiation in rose cultivars and wild species corresponds to their geographical origin and lineages. Analysis of molecular variance (AMOVA) results revealed that 83.12 % of the variance was accounted for by within sub-groups followed by significant levels of variation among the populations (10.42%) and least variance (6.46%) was noticed among individuals within groups.


2003 ◽  
Vol 29 (2) ◽  
pp. 179-188
Author(s):  
Abdelaziz Abbad ◽  
Abdelbasset El Hadrami ◽  
Abderrazzak Benchaabane

Sign in / Sign up

Export Citation Format

Share Document