scholarly journals Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai-Tibet Plateau

2018 ◽  
Vol 8 (23) ◽  
pp. 11999-12010 ◽  
Author(s):  
Abdul-Rauf Malimanga Alhassan ◽  
Weiwei Ma ◽  
Guang Li ◽  
Zhirong Jiang ◽  
Jiangqi Wu ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiangqi Wu ◽  
Haiyan Wang ◽  
Guang Li ◽  
Weiwei Ma ◽  
Jianghua Wu ◽  
...  

AbstractVegetation degradation, due to climate change and human activities, changes the biomass, vegetation species composition, and soil nutrient input sources and thus affects soil nutrient cycling and enzyme activities. However, few studies have focused on the responses of soil nutrients and enzymes to vegetation degradation in high-altitude wet meadows. In this study, we examined the effects of vegetation degradation on soil nutrients (soil organic carbon, SOC; total nitrogen, TN; total phosphorus, TP) and enzyme activities (i.e., urease, catalase, amylase) in an alpine meadow in the eastern margin of the Qinghai-Tibet Plateau. Four different levels of degradation were defined in terms of vegetation density and composition: primary wet meadow (CK), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD). Soil samples were collected at depth intervals of 0–10, 10–20, 20–40, 40–60, 60–80, and 80–100 cm to determine soil nutrient levels and enzyme activities. The results showed that SOC, TN, catalase and amylase significantly decreased with degradation level, while TP and urease increased with degradation level (P < 0.05). Soil nutrient and enzyme activity significantly decreased with soil depth (P < 0.05), and the soil nutrient and enzyme activity exhibited obvious "surface aggregation". The activities of soil urease and catalase were strongest in spring and weakest in winter. The content of TN in spring, summer, and autumn was significantly higher than observed in winter (P < 0.05). The soil TP content increased in winter. Soil amylase activity was significantly higher in summerm than in spring, autumn, and winter (P < 0.05). TP was the main limiting factor for plant growth in the Gahai wet meadow. Values of SOC and TN were positively and significantly correlated with amylase and catalase (P < 0.05), but negatively correlated with urease (P < 0.05). These results suggest the significant role that vegetation degradation and seasonal freeze–thaw cycle play in regulating enzyme activities and nutrient availability in wet meadow soil.


Author(s):  
Lu Han ◽  
Zhongmei Wan ◽  
Yuedong Guo ◽  
Changchun Song ◽  
Shaofei Jin ◽  
...  

Wetlands regulate the balance of global organic carbon. Small changes in the carbon stocks of wetland ecosystem play a crucial role in the regional soil carbon cycle. However, an accurate estimation of carbon stocks is still be debated for China’s wetlands ecosystem due to the limitation of data collection and methodology. Here, we investigate the soil organic carbon (SOC) storage in a 1-m depth in China’s palustrine wetlands. A total of 1383 sample data were collected from palustrine wetlands in China. The data sources are divided into three parts, respectively, data collection from published literature, data from books, and actual measurement data of sample points. The results demonstrate that there is considerable SOC storage in China’s palustrine wetlands (9.945 Pg C), primarily abundant in the northeast, northwest arid and semi-arid as well as Qinghai-Tibet Plateau regions. The SOC density in per unit area soil was higher in the wetland area of northeast, southwest and Qinghai-Tibet plateau. Within China terrestrial scale, the temperature and precipitation differences caused by latitude were the main environmental factors affecting the organic carbon content. Furthermore, except for the southeast and south wetland region, SOC content decreased with depth.


2016 ◽  
Vol 43 (19) ◽  
pp. 10,286-10,294 ◽  
Author(s):  
C. C. Mu ◽  
T. J. Zhang ◽  
Q. Zhao ◽  
H. Guo ◽  
W. Zhong ◽  
...  

Soil Research ◽  
2010 ◽  
Vol 48 (8) ◽  
pp. 730 ◽  
Author(s):  
Junhong Bai ◽  
Hua Ouyang ◽  
Rong Xiao ◽  
Junqin Gao ◽  
Haifeng Gao ◽  
...  

This study considers the spatial variability of soil organic carbon, nitrogen, and phosphorus storage in a drained alpine wetland and the possible relationships with soil properties. Top 0–0.30 m soil samples were collected in a typical alpine wetland in the south-eastern Qinghai–Tibet plateau using grid sampling. There was high spatial variability for soil organic carbon density (SOCD), soil total nitrogen density (STND), and soil total phosphorous density (STPD) in the drained alpine wetland. Spherical models best described the structure of the semivariograms for SOCD and STPD, and an exponential model for STND, with the range parameter of <4 m. Similar spatial distribution with lower or higher patches of C, N, and P storage were observed. SOCD, STND, and STPD were significantly negatively correlated with soil moisture (P < 0.01), and significantly positively correlated with bulk density (P < 0.01). However, no significant correlations were observed between SOCD, STND, and STPD and soil pH values. Wetland drainage might lead to higher C, N, and P densities in top 0.30 m soils due to peat compaction; thus, it is necessary to incorporate water table fluctuations or the whole depth of peat layers to estimating precisely C, N and P storage.


Sign in / Sign up

Export Citation Format

Share Document