Increased seedling establishment via enemy release at the upper elevational range limit of sugar maple

Ecology ◽  
2016 ◽  
Vol 97 (11) ◽  
pp. 3058-3069 ◽  
Author(s):  
Morgane Urli ◽  
Carissa D. Brown ◽  
Rosela Narváez Perez ◽  
Pierre-Luc Chagnon ◽  
Mark Vellend
2014 ◽  
Vol 281 (1794) ◽  
pp. 20141779 ◽  
Author(s):  
Carissa D. Brown ◽  
Mark Vellend

We are limited in our ability to predict climate-change-induced range shifts by our inadequate understanding of how non-climatic factors contribute to determining range limits along putatively climatic gradients. Here, we present a unique combination of observations and experiments demonstrating that seed predation and soil properties strongly limit regeneration beyond the upper elevational range limit of sugar maple, a tree species of major economic importance. Most strikingly, regeneration beyond the range limit occurred almost exclusively when seeds were experimentally protected from predators. Regeneration from seed was depressed on soil from beyond the range edge when this soil was transplanted to sites within the range, with indirect evidence suggesting that fungal pathogens play a role. Non-climatic factors are clearly in need of careful attention when attempting to predict the biotic consequences of climate change. At minimum, we can expect non-climatic factors to create substantial time lags between the creation of more favourable climatic conditions and range expansion.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5293 ◽  
Author(s):  
Jessica Wallace ◽  
Isabelle Laforest-Lapointe ◽  
Steven W. Kembel

BackgroundBacteria, archaea, viruses and fungi live in various plant compartments including leaves and roots. These plant-associated microbial communities have many effects on host fitness and function. Global climate change is impacting plant species distributions, a phenomenon that will affect plant-microbe interactions both directly and indirectly. In order to predict plant responses to global climate change, it will be crucial to improve our understanding of plant-microbe interactions within and at the edge of plant species natural ranges. While microbes affect their hosts, in turn the plant’s attributes and the surrounding environment drive the structure and assembly of the microbial communities themselves. However, the patterns and dynamics of these interactions and their causes are poorly understood.MethodsIn this study, we quantified the microbial communities of the leaves and roots of seedlings of the deciduous tree species sugar maple (Acer saccharumMarshall) within its natural range and at the species’ elevational range limit at Mont-Mégantic, Quebec. Using high-throughput DNA sequencing, we quantified the bacterial and fungal community structure in four plant compartments: the epiphytes and endophytes of leaves and roots. We also quantified endophytic fungal communities in roots.ResultsThe bacterial and fungal communities ofA. saccharumseedlings differ across elevational range limits for all four plant compartments. Distinct microbial communities colonize each compartment, although the microbial communities inside a plant’s structure (endophytes) were found to be a subset of the communities found outside the plant’s structure (epiphytes). Plant-associated bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes while the main fungal taxa present were Ascomycota.DiscussionWe demonstrate that microbial communities associated with sugar maple seedlings at the edge of the species’ elevational range differ from those within the natural range. Variation in microbial communities differed among plant components, suggesting the importance of each compartment’s exposure to changes in biotic and abiotic conditions in determining variability in community structure. These findings provide a greater understanding of the ecological processes driving the structure and diversity of plant-associated microbial communities within and at the edge of a plant species range, and suggest the potential for biotic interactions between plants and their associated microbiota to influence the dynamics of plant range edge boundaries and responses to global change.


2015 ◽  
Vol 45 (4) ◽  
pp. 452-462 ◽  
Author(s):  
Vanessa Pilon ◽  
Serge Payette

The sugar maple (Acer saccharum Marsh.) forest is a widespread temperate forest prevailing south of 48°N in Quebec. Windthrows are the principal disturbance maintaining the old-growth status of the forest supposedly since its postglacial establishment. Nonetheless, the presence of wood charcoal buried in several sugar maple forest soils attests to the occurrence of fire during the Holocene. In this study, we aimed to elucidate the long-term fire dynamics and species composition of three sites (Témiscamingue, Saguenay, and Gaspé peninsula) currently dominated by sugar maple situated at its northern range limit. The botanical identification and 14C dating of charcoal fragments extracted from the soil surface and the mineral soil indicate that the development of the sugar maple sites was influenced by recurrent fires at least over the last 1000 to 3500 years. Two of the studied sugar maple stands are of recent origin, with the Témiscamingue forest being established after the most recent fire in the late 18th to early 19th centuries. Our data highlight the resilience of sugar maple forests in a disturbance regime dominated by frequent fires and suggest that the northernmost sugar maple forests are young ecosystems at the Holocene timescale.


2019 ◽  
Author(s):  
Anna Aldorfová ◽  
Pavlína Knobová ◽  
Zuzana Münzbergová

Abstract1. Understanding what species characteristics allow some alien plants to become invasive while others fail to is critical to our understanding of community assembly processes. While many characteristics have been shown to predict plant invasiveness, the importance of plant-soil feedbacks (PSFs) in invasions has been difficult to assess since individual studies include only a few species and use disparate methodology.2. We studied PSFs of 68 invasive and non-invasive alien species in a single two-phase garden experiment, and compared the relative importance of PSF, residence time, phylogenetic novelty and plant traits for plant invasiveness. Additionally, we tested for relationships between PSF, residence time and phylogenetic novelty.3. PSF for seedling establishment belonged to five best predictors of plant invasiveness, along with specific leaf area, height, seedling growth rate, and residence time. Invasive species had more positive PSF for seedling establishment, but not for biomass, than non-invasive species. Phylogenetically novel species experienced less negative PSF than species with native congeners, suggesting they benefit more from enemy release. PSF of non-invasive species, contrary to that of invasive species, was becoming more negative with increasing residence time.4.Synthesis. We demonstrated that PSF plays a role in predicting invasiveness that is comparable with other species characteristics that are more commonly studied. PSF should thus receive more attention in studies predicting community structure and in programs assessing the likely invasions of aliens.


2021 ◽  
Vol 4 ◽  
Author(s):  
Nicolas Bélanger ◽  
Alexandre Collin ◽  
Rim Khlifa ◽  
Simon Lebel-Desrosiers

Conifers and deciduous trees greatly differ in regard to their phylogenetics and physiology as well as their influence on soil microclimate and chemical properties. Soil respiration (Rs) in forests can therefore differ depending on tree species composition, and assessments of the variation in Rs in various forest types will lead to a more thorough understanding of the carbon cycle and more robust long-term simulations of soil carbon. We measured Rs in 2019 and 2020 in stands of various species composition in a sugar maple forest near the northern range limit of temperate deciduous forests in Quebec, Canada. Seasonal variations in soil temperature had the largest influence on Rs, but conditions created by the stands also exerted a significant effect. Relative to the typical sugar maple-yellow birch forest (hardwoods), Rs in stands with >20% of basal area from balsam fir (mixedwoods) was increased by 21%. Whilst, when American beech contributed >20% of litterfall mass (hardwood-beech stands), Rs was decreased by 11 and 36% relative to hardwoods and mixedwoods, respectively. As a whole, Rs was significantly higher in mixedwoods than in other forest types, and Rs was significantly higher in hardwoods than in hardwood-beech stands. Sugar maple and American beech at the study site are near their northern range limit, whereas balsam fir is near its southern limit. Rs in mixedwoods was therefore higher than in hardwoods and hardwood-beech stands due to high root activity in the presence of fir, despite colder and drier soils. We estimated that root respiration in mixedwoods was more than threefold that in hardwoods and hardwood-beech stands. The lower Rs in hardwood-beech stands compared to hardwoods points to the lower soil temperature as well as the poor quality of beech litter (low decomposability) as indicated by a generally lower heterotrophic respiration. Other than soil temperature, regression models identified mixedwoods, soil water potential and Mg2+ activity in the soil solution as important predictor variables of Rs with about 90% of its variation explained. Our study shows the benefits of combining forest-specific properties to climatic data for more robust predictions of Rs.


Sign in / Sign up

Export Citation Format

Share Document