scholarly journals Predator complementarity dampens variability of phytoplankton biomass in a diversity–stability trophic cascade

Ecology ◽  
2021 ◽  
Author(s):  
Chase J. Rakowski ◽  
Caroline E. Farrior ◽  
Schonna R. Manning ◽  
Mathew A. Leibold

2019 ◽  
Vol 76 (11) ◽  
pp. 2102-2109 ◽  
Author(s):  
Blake R. Stuparyk ◽  
Mark Graham ◽  
Jenna Cook ◽  
Mitchell A. Johnsen ◽  
Karen K. Christensen-Dalsgaard ◽  
...  

Cyanobacterial blooms in lakes of low nutrient status are recent ecological surprises. Culling of planktivorous fish may help suppress phytoplankton blooms via a trophic cascade effect. To test this hypothesis, we conducted a 90-day experiment adjacent to a shallow oligomesotrophic lake increasingly beset by midsummer cyanobacterial blooms in the presence of high abundances of minnows and sparse herbivorous zooplankton. The single-factor (± three spottail shiners, Notropis hudsonius) experimental design was replicated 10 times for a total of twenty 1200 L capacity mesocosms. Contrary to the trophic cascade hypothesis, minnow removal decreased the abundance of bosminids capable of grazing cyanobacteria. Nevertheless, removal of the minnows significantly both suppressed phytoplankton biomass and offset the development of cyanobacteria, such as Gloeotrichia echinulata. Lower concentrations of phosphorus and nitrogen in the fishless relative to stocked mesocosms best explained these differences in the phytoplankton community. Our findings highlight how fisheries management practices that enhance minnow populations in lakes of low productivity may inadvertently contribute to cyanobacterial blooms through increased nutrient cycling.



2017 ◽  
Author(s):  
Jessica Garzke ◽  
Stephanie J. Connor ◽  
Ulrich Sommer ◽  
Mary I. O’Connor

AbstractEcological communities and their ecosystem functions are sensitive to temperature, and aquatic habitats worldwide continue to experience unprecedented warming. Understanding ecological effects of warming requires linking empirical evidence to theories that allow projection to unobserved conditions. Metabolic scaling theory and its tests suggest that warming accelerates ecosystem functions (e.g., oxygen flux), yet this prediction apparently contradicts community-level studies suggesting warming is a stressor that can reduce ecosystem function. We sought to reconcile these predictions with an experimental test of the hypothesis that cascading trophic interactions modify the temperature-dependence of community structure and ecosystem fluxes. In a series of independent freshwater ecosystems exposed to a thermal gradient, we found that warmer temperatures strengthened the trophic cascade increased and indirectly changed community structure by altering grazer species composition and phytoplankton biomass. Temperature-driven community shifts only modestly affected the temperature dependence of net ecosystem oxygen fluxes. Over the 10 °C thermal gradient, NPP and ER increased ∼2.7-fold among ecosystems, while standing phytoplankton biomass declined by 85-95%. The exponential increase in oxygen flux over the thermal gradient, as well as monotonic declines in phytoplankton standing stock, suggested no threshold effects of warming across systems. We also observed temperature variation over time, within ecosystems. For phytoplankton biomass, temporal variation had the opposite effect to spatial variation, suggesting that within-community temporal change in community structure was not predicted by space-for-time substitution. We conclude that food chain length can modify effects of temperature on ecosystem fluxes, but that temperature can still have continuous and positive effects on ecosystem fluxes, consistent with patterns based on large-scale, macroecological comparisons. Changes in community structure, including temperature dependent trophic cascades, may be compatible with prevailing and predictable effects of temperature on ecosystem functions related to fundamental effects of temperature on metabolism.Statement of authorshipJG & MIO designed the study, MIO & US provided materials, JG & SJC performed research and collected data, JG performed zooplankton analysis, SJC performed phytoplankton analysis, JG & MIO performed modeling work, analyzed data output, and wrote the first draft, and all authors contributed substantially to reviews



2019 ◽  
Author(s):  
Chase J. Rakowski ◽  
Caroline E. Farrior ◽  
Schonna R. Manning ◽  
Mathew A. Leibold

AbstractTrophic cascades – indirect effects of predators that propagate down through food webs – have been extensively documented, especially in aquatic ecosystems. It has also been shown that predator diversity can mediate these trophic cascades, and, separately, that herbivore biomass can impact the stability of primary producers. However, whether predator diversity can cause cascading effects on the stability of lower trophic levels has not yet been studied. We conducted a laboratory microcosm experiment and a field mesocosm experiment manipulating the presence and coexistence of two heteropteran predators and measuring their effects on zooplankton herbivores and phytoplankton basal resources. We predicted that, if the predators partitioned their herbivore prey, for example by size, then co-presence of the predators would lead to 1) increased average values and 2) decreased temporal variability of phytoplankton basal resources. We present evidence that the predators partitioned their herbivore prey and found that their simultaneous suppression of herbivore groups reduced the variability of edible (smaller) phytoplankton biomass, without affecting mean phytoplankton biomass. We also found that phytoplankton that were more resistant to herbivory were not affected by our manipulations, indicating that the zooplankton herbivores played an important role in mediating this cascading diversity-stability effect. Our results demonstrate that predator diversity may indirectly stabilize basal resource biomass via a “diversity-stability trophic cascade,” seemingly dependent on predator complementarity and the vulnerability of taxa to consumption, but independent of a classic trophic cascade in which average biomass is altered. Predator diversity, especially if correlated with diversity of prey use, may be important for regulating ecosystem stability, and this relationship suggests biological control methods for improving the reliability of microalgal yields.



1993 ◽  
Vol 28 (6) ◽  
pp. 29-33 ◽  
Author(s):  
V. Vyhnálek ◽  
Z. Fišar ◽  
A. Fišarová ◽  
J. Komárková

The in vivo fluorescence of chlorophyll a was measured in samples of natural phytoplankton taken from the Římov Reservoir (Czech Republic) during the years 1987 and 1988. The fluorescence intensities of samples either with or without addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron, DCMU) were found reliable for calculating the concentration of chlorophyll a during periods when cyanobacteria were not abundant. The correction for background non-chlorophyll fluorescence appeared to be essential. No distinct correlation between a DCMU-induced increase of the fluorescence and primary production of phytoplankton was found.



1987 ◽  
Vol 44 (12) ◽  
pp. 2155-2163 ◽  
Author(s):  
I. M. Gray

Differences between nearshore and offshore phytoplankton biomass and composition were evident in Lake Ontario in 1982. Phytoplankton biomass was characterized by multiple peaks which ranged over three orders of magnitude. Perhaps as a consequence of the three times higher current velocities at the northshore station, phytoplankton biomass ranged from 0.09 to 9.00 g∙m−3 compared with 0.10 to 2.40 g∙m−3 for the midlake station. Bacillariophyceae was the dominant group at the northshore station until September when Cyanophyta contributed most to the biomass (83%). Although Bacillariophyceae was the principal component of the spring phytoplankton community at the midlake station, phytoflagellates (49%) and Chlorophyceae (25%) were responsible for summer biomass, with the Chlorophyceae expanding to 80% in the fall. The seasonal pattern of epilimnetic chlorophyll a correlated with temperature. While chlorophyll a concentrations were similar to values from 1970 and 1972, algal biomass had declined and a number of eutrophic species (Melosira binderana, Stephanodiscus tenuis, S. hantzschii var. pusilla, and S. alpinus) previously found were absent in 1982.



2020 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Wenlong Xu ◽  
Guifen Wang ◽  
Long Jiang ◽  
Xuhua Cheng ◽  
Wen Zhou ◽  
...  

The spatiotemporal variability of phytoplankton biomass has been widely studied because of its importance in biogeochemical cycles. Chlorophyll a (Chl-a)—an essential pigment present in photoautotrophic organisms—is widely used as an indicator for oceanic phytoplankton biomass because it could be easily measured with calibrated optical sensors. However, the intracellular Chl-a content varies with light, nutrient levels, and temperature and could misrepresent phytoplankton biomass. In this study, we estimated the concentration of phytoplankton carbon—a more suitable indicator for phytoplankton biomass—using a regionally adjusted bio-optical algorithm with satellite data in the South China Sea (SCS). Phytoplankton carbon and the carbon-to-Chl-a ratio (θ) exhibited considerable variability spatially and seasonally. Generally, phytoplankton carbon in the northern SCS was higher than that in the western and central parts. The regional monthly mean phytoplankton carbon in the northern SCS showed a prominent peak during December and January. A similar pattern was shown in the central part of SCS, but its peak was weaker. Besides the winter peak, the western part of SCS had a secondary maximum of phytoplankton carbon during summer. θ exhibited significant seasonal variability in the northern SCS, but a relatively weak seasonal change in the western and central parts. θ had a peak in September and a trough in January in the northern and central parts of SCS, whereas in the western SCS the minimum and maximum θ was found in August and during October–April of the following year, respectively. Overall, θ ranged from 26.06 to 123.99 in the SCS, which implies that the carbon content could vary up to four times given a specific Chl-a value. The variations in θ were found to be related to changing phytoplankton community composition, as well as dynamic phytoplankton physiological activities in response to environmental influences; which also exhibit much spatial differences in the SCS. Our results imply that the spatiotemporal variability of θ should be considered, rather than simply used a single value when converting Chl-a to phytoplankton carbon biomass in the SCS, especially, when verifying the simulation results of biogeochemical models.



Sign in / Sign up

Export Citation Format

Share Document