Estimation of output voltage for high-speed, surface permanent magnet generator with large air gap length

2005 ◽  
Vol 153 (2) ◽  
pp. 52-60 ◽  
Author(s):  
Akihiro Hoshino ◽  
Masayuki Morimoto ◽  
Nobuyuki Matsui
2019 ◽  
Vol 12 (6) ◽  
pp. 290 ◽  
Author(s):  
Viacheslav Vavilov ◽  
Luca Papini ◽  
Flyur Ismagilov ◽  
Shoujun Song ◽  
Valentina Ayguzina

2020 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Vannakone Lounthavong ◽  
Warat Sriwannarat ◽  
Pattasad Seangwong ◽  
Apirat Siritaratiwat ◽  
Pirat Khunkitti

2017 ◽  
Author(s):  
Muhammad Kasim ◽  
Pudji Irasari ◽  
M. Fathul Hikmawan ◽  
Puji Widiyanto ◽  
Ketut Wirtayasa

2013 ◽  
Vol 397-400 ◽  
pp. 501-504
Author(s):  
Xin Yi Zhang ◽  
Xing Hua Wang ◽  
Ming Hui Li ◽  
Xue Qin Zhang

High-speed slotless permanent magnet brushless motor based on soft ferrite adopts a large effective air gap structure. For the large effective air-gap, the air-gap flux distribution becomes uneven and the end leakage flux significantly increases. Thus, the traditional analytical method of the phase EMF is inapplicable. This paper deduces the analytical expression of the phase EMF based on the analytical calculation of the air-gap field and analyzes the distribution of the end leakage flux by 3D finite elements methods. Then the end leakage flux is considered by a correction factor of the core length. Finally the analytical calculation method is proved to be feasible by the comparison between the finite elements results and the prototype test results.


2011 ◽  
Vol 63-64 ◽  
pp. 970-973
Author(s):  
Xue Hai Pan

This paper discusses and analysis the constant voltage of vehicle applied permanent magnet generator. The permanent magnet can produce magnetic field in an air gap with no excitation winding and no dissipation of electric power, when the rotor turns, the magnet field turns, the generator generates electricity, with the permanent magnet material of high remnant magnetic induction and the optimized design of the generator, the output voltage is improved when the engine at low speed. We develop a single-phase double half-wave electric regulator is to ensure the stability of the output voltage and can direct output direct current.


2021 ◽  
Vol 12 (2) ◽  
pp. 68-80
Author(s):  
Muhammad Fathul Hikmawan ◽  
Agung Wibowo ◽  
Muhammad Kasim

Mechanical tolerance is something that should be carefully taken into consideration and cannot be avoided in a product for manufacturing and assembly needs, especially in the design stage, to avoid excessive dimensional and geometric deviations of the components made. This paper discusses how to determine and allocate dimensional and geometric tolerances in the design of a 10 kW, 500 rpm radial flux permanent magnet generator prototype components. The electrical and mechanical design results in the form of the detailed nominal dimensions of the generator components, and the allowable air gap range are used as input parameters for tolerance analysis. The values of tolerance allocation and re-allocation process are carried out by considering the capability of the production machine and the ease level of the manufacturing process. The tolerance stack-up analysis method based on the worst case (WC) scenario is used to determine the cumulative effect on the air gap distance due to the allocated tolerance and to ensure that the cumulative effect is acceptable so as to guarantee the generator's functionality. The calculations and simulations results show that with an air gap of 1 ± 0.2 mm, the maximum air gap value obtained is 1.1785 mm, and the minimum is 0.8 mm. The smallest tolerance value allocation is 1 µm on the shaft precisely on the FSBS/SRBS feature and the rotor on the RPMS feature. In addition, the manufacturing process required to achieve the smallest tolerance allocation value is grinding, lapping, and polishing processes.


Sign in / Sign up

Export Citation Format

Share Document