Interleukin 4 (BSF-1) induces growth in resting murine CD8 T cells triggered via cross-linking of T3 cell surface structures

1988 ◽  
Vol 18 (5) ◽  
pp. 767-772 ◽  
Author(s):  
Thomas Miethke ◽  
Ruth Schmidberger ◽  
Klaus Heeg ◽  
Steven Gillis ◽  
Hermann Wagner
2019 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Alice Bayiyana ◽  
Samuel Okurut ◽  
Rose Nabatanzi ◽  
Godfrey Zziwa ◽  
David R. Boulware ◽  
...  

Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10–15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27–), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.


1993 ◽  
Vol 8 (3) ◽  
pp. 151-154 ◽  
Author(s):  
A. Anichini ◽  
R. Mortarini ◽  
G. Parmiani

A number of different cytokines, including IL-1α. and ß, IL-2, IL-3, IL-4, IL-6, IL-7, IL-8, IFN-α, -ß and γ, TNF-α -ß, and TGF-ß1, can modulate the expression of distinct cell surface antigens of normal and neoplastic cells. Both induction/increase of expression and reduction of expression can be achieved depending on the antigen and on the cytokine. Antigens subjected to the modulating activity of cytokines include distinct families of cell surface structures such as the molecules coded by the major histocompatibility complex (MHC), the superfamily of adhesion receptors that regulate cell-cell and cell-matrix interaction, receptors for cytokines and growth factors and tumor-associated antigens. The modulating activity of cytokines is a consequence of their influence on gene expression, protein synthesis, membrane expression and shedding of antigens from the cell surface. The changes of phenotype due to the action of cytokines can influence the signalling pathways dependent on the expression and function of cell surf ace structures. Therefore, the antigen modulating activity of cytokines can thoroughly affect the biological behavior of normal and neoplastic cells. As described here, most of the modulating effects of cytokines on different cell surface structures and the functional consequences of antigenic modulation can be verified in human malignant melanoma cells.


1997 ◽  
Vol 56 ◽  
pp. 413
Author(s):  
L. Stanciu ◽  
J. Shute ◽  
C. Promwong ◽  
S. Holgate ◽  
R. Djukanovic

2018 ◽  
Vol 115 (40) ◽  
pp. 10106-10111 ◽  
Author(s):  
Emily C. Hollenbeck ◽  
Alexandra Antonoplis ◽  
Chew Chai ◽  
Wiriya Thongsomboon ◽  
Gerald G. Fuller ◽  
...  

UropathogenicEscherichia coli(UPEC) are the major causative agents of urinary tract infections, employing numerous molecular strategies to contribute to adhesion, colonization, and persistence in the bladder niche. Identifying strategies to prevent adhesion and colonization is a promising approach to inhibit bacterial pathogenesis and to help preserve the efficacy of available antibiotics. This approach requires an improved understanding of the molecular determinants of adhesion to the bladder urothelium. We designed experiments using a custom-built live cell monolayer rheometer (LCMR) to quantitatively measure individual and combined contributions of bacterial cell surface structures [type 1 pili, curli, and phosphoethanolamine (pEtN) cellulose] to bladder cell adhesion. Using the UPEC strain UTI89, isogenic mutants, and controlled conditions for the differential production of cell surface structures, we discovered that curli can promote stronger adhesive interactions with bladder cells than type 1 pili. Moreover, the coproduction of curli and pEtN cellulose enhanced adhesion. The LCMR enables the evaluation of adhesion under high-shear conditions to reveal this role for pEtN cellulose which escaped detection using conventional tissue culture adhesion assays. Together with complementary biochemical experiments, the results support a model wherein cellulose serves a mortar-like function to promote curli association with and around the bacterial cell surface, resulting in increased bacterial adhesion strength at the bladder cell surface.


1997 ◽  
Vol 27 (10) ◽  
pp. 2657-2665 ◽  
Author(s):  
Beverly J. Holmes ◽  
Paul A. Macary ◽  
Alistair Noble ◽  
D. Michael Kemeny

1987 ◽  
Vol 166 (4) ◽  
pp. 1150-1155 ◽  
Author(s):  
R Abe ◽  
J J Ryan ◽  
R J Hodes

Mls determinants share with MHC products the unique property of stimulating T cells at extraordinarily high precursor frequencies. The Mls system was originally described as a single locus on chromosome 1, with four alleles, Mlsa, Mlsb, Mlsc, and Mlsd, that encode polymorphic cell surface structures. However, the fundamental issues of polymorphism and allelism in the Mls system remain controversial. To clarify these questions, a formal segregation analysis of the genes encoding Mlsa and Mlsc determinants was carried out by testing the capacity of spleen cells from progeny of (Mlsa X Mlsc)F1 X Mlsb breedings to stimulate responses by unprimed T cells and by Mlsa- and Mlsc-specific cloned T cells. The results of this analysis indicated that the gene encoding Mlsa determinants is neither allelic to nor linked to the gene encoding Mlsc determinants. Together with previous findings, these results also suggest that another strongly stimulatory type, Mlsd, in fact results from the independent expression of unlinked Mlsa and Mlsc gene products. Based on these observations, it is concluded that, contrary to conventional concepts, the stimulatory phenotypes designated as Mlsa, Mlsc, and Mlsd can be accounted for by the independent expression of the products of at least two unlinked gene loci.


Sign in / Sign up

Export Citation Format

Share Document