scholarly journals Unexpected T-cell recognition of an altered peptide ligand is driven by reversed thermodynamics

2012 ◽  
Vol 42 (11) ◽  
pp. 2990-3000 ◽  
Author(s):  
Eva B. Allerbring ◽  
Adil D. Duru ◽  
Hannes Uchtenhagen ◽  
Chaithanya Madhurantakam ◽  
Markus B. Tomek ◽  
...  
2019 ◽  
Author(s):  
Adil Doganay Duru ◽  
Renhua Sun ◽  
Eva B. Allerbring ◽  
Jesseka Chadderton ◽  
Nadir Kadri ◽  
...  

AbstractViral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape.Author SummaryViral escape mutagenesis correlates often with disease progression and represents a major hurdle for vaccination-based therapies. Here, we have designed and developed a novel generation of altered epitopes that re-establish and enhance significantly CD8+ T cell recognition of a naturally occurring viral immune escape variant. Biophysical and structural analyses provide a clear understanding of the molecular mechanisms underlying this reestablished recognition. We believe that this approach can be implemented to currently available or novel vaccination approaches to efficiently restore T cell recognition of virus escape variants to control disease progression.


1999 ◽  
Vol 60 (7) ◽  
pp. 608-618 ◽  
Author(s):  
Sandra Reichstetter ◽  
William W Kwok ◽  
Sharon Kochik ◽  
David M Koelle ◽  
Jon S Beaty ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A644-A644
Author(s):  
John Flickinger ◽  
Jagmohan Singh ◽  
Yanki Yarman ◽  
Robert Carlson ◽  
Scott Waldman ◽  
...  

BackgroundThe Gram-positive bacterium Listeria monocytogenes (Lm) is a promising vector for cancer immunotherapy due to its ability to directly infect antigen-presenting cells, induce potent CD8+ T-cell immunity, and remodel immunosuppressive tumor microenvironments.1 Recent clinical trials have demonstrated safety and immunogenicity of Lm-based cancer vaccines in lung, cervical, pancreatic, and other cancers. In colorectal cancer, the transmembrane receptor guanylyl cyclase C (GUCY2C) is an emerging target for immunotherapy.2 Here, we examined the immunogenicity of a recombinant strain of Listeria monocytogenes secreting GUCY2C (Lm-GUCY2C). Surprisingly, Lm-GUCY2C vaccination induced robust Lm-specific CD8+ T-cell immunity but failed to prime GUCY2C-specific CD8+ T-cell responses. These studies explore the hypothesis that immunodominant Lm antigens suppress primary immunity to subdominant GUCY2C epitopes in Lm-GUCY2CMethodsLm-GUCY2C expresses the extracellular domain of mouse GUCY2C23-429 downstream of an ActA promoter integrated into the genome of the live, attenuated delta actA delta inlB Lm strain. Altered peptide ligands were designed based on NetMHCpan 4.0 peptide-MHC binding algorithms and similarly cloned into Lm. Peptide-MHC class I complex stability was quantified by FACS-based surface peptide-MHC dissociation on the TAP-deficient cell line, RMA-S H-2Kd.3In vivo efficacy studies employed IFNγ-ELISpot quantification of T-cell responses and tumor challenge studies with the CT26 colorectal cancer cell line. Adenovirus expressing GUCY2C was used as a positive control.2 4ResultsLm-GUCY2C vaccination of BALB/c mice generated Lm-specific CD8+ T-cell responses but an absence of GUCY2C-specific immunity. Peptide-MHC stability studies revealed poor stability of the dominant GUCY2C254-262 epitope complexed with H-2Kd compared to H-2Kd-restricted Lm epitopes derived from the LLO and p60 Lm antigens. Mutation of the GUCY2C254-262 peptide at critical anchoring residues for binding H-2Kd revealed that the altered peptide ligand with an F255Y mutation significantly improved the stability of the GUCY2C254-262-H-2Kd complex. Similarly, vaccination of mice with recombinant Lm-GUCY2C expressing the altered peptide ligand (Lm-GUCY2CF255Y) restored GUCY2C immunogenicity and antitumor immunity.ConclusionsImmunodominant Lm antigens may interfere with immune responses directed to the vaccine target antigen GUCY2C by competing with GUCY2C epitope for MHC class I binding and presentation. Moreover, use of a substituted GUCY2C -peptide ligand with enhanced peptide-MHC class I stability restored GUCY2C-specific immunity in the context of Lm-GUCY2C, an approach that can be translated to patients. Importantly, these studies also suggest that ongoing Lm-based vaccine development programs targeting a variety of antigens in other cancer types may be similarly limited by the immunodominance of Lm epitopes.AcknowledgementsThe authors thank Dr. Peter Lauer for providing the pPL2 integration vector used in cloning Lm-GUCY2C and Dr. Sean Murphy for providing the RMA-S H-2Kd cell line.Ethics ApprovalStudies were approved by the Thomas Jefferson University IACUC (Protocol # 01956).ReferencesFlickinger JC, Rodeck U, Snook AE. Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress. Vaccines (Basel) 2018;6. doi:10.3390/vaccines6030048.Snook AE, Baybutt TR, Xiang B, Abraham TS, Flickinger JC, Hyslop T, et al. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J Immunother Cancer 2019;7:104. doi:10.1186/s40425-019-0576-2.Müllbacher A, Lobigs M, Kos FJ, Langman R. Alloreactive cytotoxic T-cell function, peptide nonspecific. Scand J Immunol 1999;49:563–9.Flickinger J. JC, Singh J, Carlson R, Leong E, Baybutt T, Barton J, et al. Chimeric Ad5.F35 vector evades anti-adenovirus serotype 5 neutralization opposing GUCY2C-targeted antitumor immunity. J Immunother Cancer 2020.


2010 ◽  
Vol 60 (1) ◽  
pp. 133-144 ◽  
Author(s):  
Timothy J. Haggerty ◽  
Ian S. Dunn ◽  
Lenora B. Rose ◽  
Estelle E. Newton ◽  
Sunil Martin ◽  
...  

1976 ◽  
Vol 144 (4) ◽  
pp. 1134-1140 ◽  
Author(s):  
T G Rehn ◽  
J K Inman ◽  
G M Shearer

The specificity of C57BL/10 cytotoxic effector cells generated by in vitro sensitization with autologous spleen cells modified with a series of related nitrophenyl compounds was investigated. The failure of trinitrophenyl (TNP)-sensitized effector cells to lyse TNP-beta-alanylglycylglycyl(AGG)-modified target cells is presented as evidence contradicting the intimacy or dual receptor model or T-cell recognition in its simplest form. Data are also shown indicating that sensitization with N-(3-nitro-4-hydroxy-5-iodophenylacetyl)-AGG-modified stimulating cells generates noncross-reacting clones of cytotoxic effector cells.


1993 ◽  
Vol 23 (s1) ◽  
pp. 11-11
Author(s):  
Paul J Fairchild ◽  
David C Wraith

2006 ◽  
Vol 121 (2) ◽  
pp. 134-143 ◽  
Author(s):  
Massimo Amicosante ◽  
Andrew P. Fontenot

Sign in / Sign up

Export Citation Format

Share Document