scholarly journals Electrochemical chemo‐ and biosensors based on microgels immobilized on electrode surface

Author(s):  
Kamil Marcisz ◽  
Marcin Karbarz ◽  
Zbigniew Stojek
Keyword(s):  
1990 ◽  
Vol 87 ◽  
pp. 1597-1607 ◽  
Author(s):  
L Benedetti ◽  
M Borsari ◽  
C Fontanesi ◽  
G Battistuzzi Gavioli

2011 ◽  
Vol 131 (2) ◽  
pp. 88-89
Author(s):  
Yasuyuki Hirano ◽  
Elito Kazawa ◽  
Yoshiaki Haramoto ◽  
Hiromichi Yoshida

2003 ◽  
Vol 775 ◽  
Author(s):  
Ivan Stanish ◽  
Daniel A. Lowy ◽  
Alok Singh

AbstractImmobilized polymerized electroactive vesicles (IPEVs) are submicron biocapsules capable of storing charge in confined environments and chemisorbing on surfaces. Methods to immobilize stable submicron sized electroactive vesicles and the means to measure electroactivity of IPEVs at nanolevels have been demonstrated. IPEVs can withstand steep potential gradients applied across their membrane, maintain their structural integrity against surfaces poised at high/low electrical potentials, retain electroactive material over several days, and reversibly mediate (within the membrane) electron flow between the electrode surface and vesicle interior. IPEVs have strong potential to be used for charge storage and electron coupling applications that operate on the submicron scale and smaller.


2020 ◽  
Author(s):  
Mitsunori Kitta

This manuscript propose the operando detection technique of the physical properties change of electrolyte during Li-metal battery operation.The physical properties of electrolyte solution such as viscosity (η) and mass densities (ρ) highly affect the feature of electrochemical Li-metal deposition on the Li-metal electrode surface. Therefore, the operando technique for detection these properties change near the electrode surface is highly needed to investigate the true reaction of Li-metal electrode. Here, this study proved that one of the atomic force microscopy based analysis, energy dissipation analysis of cantilever during force curve motion, was really promising for the direct investigation of that. The solution drag of electrolyte, which is controlled by the physical properties, is directly concern the energy dissipation of cantilever motion. In the experiment, increasing the energy dissipation was really observed during the Li-metal dissolution (discharge) reaction, understanding as the increment of η and ρ of electrolyte via increasing of Li-ion concentration. Further, the dissipation energy change was well synchronized to the charge-discharge reaction of Li-metal electrode.This study is the first report for direct observation of the physical properties change of electrolyte on Li-metal electrode reaction, and proposed technique should be widely interesting to the basic interfacial electrochemistry, fundamental researches of solid-liquid interface, as well as the battery researches.


1981 ◽  
Vol 46 (2) ◽  
pp. 368-376 ◽  
Author(s):  
Josef Veselý

Titration of sulphates with lead perchlorate employing lead ion selective electrode indication was studied using additions of various organic solvents at different pH' and ionic strength values. As the optimum emerged systems with 60-70% 1,4-dioxane, pH' 5.3-5.6. After dehydration with sodium hydroxide, dioxane must be freed from the electrode surface-oxidizing impurities by their reduction with sodium metal and subsequent distillation. The method was applied to determination of sulphates in mountain spring waters. Units of ppm can be determined; the limit of determination, however, depends considerably on the content of dioxane, total salt content in the sample, and speed of the semi-automatic titration. Lead can be determined with EDTA in concentrations down to c(Pb2+) = 5 . 10-6 mol l-1.


1980 ◽  
Vol 45 (1) ◽  
pp. 169-178 ◽  
Author(s):  
František Opekar ◽  
Karel Holub

The galvanostatic dissolution of mercury from the surface of glassy carbon into a thiocyanate solution proceeds in accord with theoretical assumptions, as manifested by the constant product of the dissolution current and transition time. Under certain relations between the amount of oxidised mercury and concentration of thiocyanate at the electrode surface, however, a small part of the mercury dissolves at more positive potentials than correspond to the Nernst equation. This dissolution can be accompanied by potential oscillations. The anomalous behaviour is elucidated by the concept about coverage of a certain part of mercury with a film of sparingly soluble compounds of SCN- ions with mercury. This film is formed at the end of the galvanostatic dissolution on certain places of the electrode surface covered with mercury droplets, where SCN- ions are much exhausted as a result of a high current density.


1989 ◽  
Vol 54 (10) ◽  
pp. 2638-2643
Author(s):  
David I. Balanchivadze ◽  
Tamara R. Chelidze ◽  
Jondo J. Japaridze

The effect of bifunctional alcohols ethylene glycol (EG) and 1,2-propylene glycol (1,2 PG) on the kinetic parameters for the irreversible chromate ion reduction were investigated by polarographic and coulometric methods of analysis. The electroreduction of chromate ion in neutral bifunctional alcohol solutions proceeds according to the scheme: Cr(VI)–Cr(III)–Cr(II) and the values of the standard rate constant k*0 decrease in the order H2O > EG > 1,2 PG. The values of real activation energy, Q, activation energy of diffusion, QD, and frequency factor log A° have been calculated. The obtained values of QD as well as Q proved the diffusion nature of limiting current. The values of the frequency factor log A° decrease in the order H2O > EG > 1,2 PG, which points to a less favourable orientation of the electroactive ions at the electrode surface in glycols.


1999 ◽  
Vol 64 (4) ◽  
pp. 585-594 ◽  
Author(s):  
Barbara Marczewska

The acceleration effect of p-toluidine on the electroreduction of Zn(II) on the mercury electrode surface in binary mixtures water-methanol and water-dimethylformamide is discussed. The obtained apparent and true forward rate constants of Zn(II) reduction indicate that the rate constant of the first electron transfer increases in the presence of p-toluidine. The acceleration effect may probably be accounted for by the concept of the formation on the mercury electrode an activated complex, presumably composed of p-toluidine and solvent molecules.


Sign in / Sign up

Export Citation Format

Share Document