Sustainability assessment of photobiological hydrogen production using anaerobic bacteria (Rhodospirillum rubrum ) via exergy concept: Effect of substrate concentrations

2016 ◽  
Vol 35 (4) ◽  
pp. 1166-1176 ◽  
Author(s):  
Ali Dadak ◽  
Mortaza Aghbashlo ◽  
Meisam Tabatabaei ◽  
Ghasem Najafpour ◽  
Habibollah Younesi
2005 ◽  
Vol 5 (1) ◽  
pp. 35
Author(s):  
Ghasem Najafpour ◽  
Habibollah Younesi

Production of biological hydrogen by anaerobic photosynthetic bacteria, specifically Rhodospirillum rubrum, from synthesis gas was successfully conducted at ambient temperature and pressure. The influence of initial acetate concentration as the substrate for microbial growth was investigated in a batch system. Series of experiments were conducted using serum bottles as bioreactor. The agitation rate and light intensity were adjusted at 200 rpm and 1,000 lux, respectively. The concentration of acetate as carbon source was varied from 0.5 to 3.0 g/I. It was observed that the increase in concentration of the carbon source from 2.5 to 3 g/l resulted in the decrease both in the growth of the microorganism and in hydrogen production rate. Experimental results showed that the optimum acetate concentration would be from 1 to 2 g/I. The resulting data also showed that in 1-2 g/I acetate, highest hydrogen formation and cell concentration were obtained. Additional acetate in the initial culture medium inhibited the growth of R. rubrum. An inverse relationship between acetate concentration and initial cell growth was observed. This article presents a method to calculate the mass transfer coefficient for gaseous substrates and the process parameters involved in a gas and liquid fermentation system. The procedure had been defined by experimental data for the bioconversion of CO to C02' while H20 is converted into hydrogen. Hence, a biologically-based water-gas shift reaction provided an attractive alternative improvement for renewable resources to achieve higher hydrogen production. Keywords: Anaerobic bacteria, batch culture, coefficient, CO uptake rate, mass transfer, photobiological hydrogen, and Rhodospirillum rubrum.


2016 ◽  
Vol 139 ◽  
pp. 157-166 ◽  
Author(s):  
Ali Dadak ◽  
Mortaza Aghbashlo ◽  
Meisam Tabatabaei ◽  
Habibollah Younesi ◽  
Ghasem Najafpour

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. Silva ◽  
A. A. Abreu ◽  
A. F. Salvador ◽  
M. M. Alves ◽  
I. C. Neves ◽  
...  

AbstractThermophilic biohydrogen production by dark fermentation from a mixture (1:1) of C5 (arabinose) and C6 (glucose) sugars, present in lignocellulosic hydrolysates, and from Sargassum sp. biomass, is studied in this work in batch assays and also in a continuous reactor experiment. Pursuing the interest of studying interactions between inorganic materials (adsorbents, conductive and others) and anaerobic bacteria, the biological processes were amended with variable amounts of a zeolite type-13X in the range of zeolite/inoculum (in VS) ratios (Z/I) of 0.065–0.26 g g−1. In the batch assays, the presence of the zeolite was beneficial to increase the hydrogen titer by 15–21% with C5 and C6-sugars as compared to the control, and an increase of 27% was observed in the batch fermentation of Sargassum sp. Hydrogen yields also increased by 10–26% with sugars in the presence of the zeolite. The rate of hydrogen production increased linearly with the Z/I ratios in the experiments with C5 and C6-sugars. In the batch assay with Sargassum sp., there was an optimum value of Z/I of 0.13 g g−1 where the H2 production rate observed was the highest, although all values were in a narrow range between 3.21 and 4.19 mmol L−1 day−1. The positive effect of the zeolite was also observed in a continuous high-rate reactor fed with C5 and C6-sugars. The increase of the organic loading rate (OLR) from 8.8 to 17.6 kg m−3 day−1 of COD led to lower hydrogen production rates but, upon zeolite addition (0.26 g g−1 VS inoculum), the hydrogen production increased significantly from 143 to 413 mL L−1 day−1. Interestingly, the presence of zeolite in the continuous operation had a remarkable impact in the microbial community and in the profile of fermentation products. The effect of zeolite could be related to several properties, including the porous structure and the associated surface area available for bacterial adhesion, potential release of trace elements, ion-exchanger capacity or ability to adsorb different compounds (i.e. protons). The observations opens novel perspectives and will stimulate further research not only in biohydrogen production, but broadly in the field of interactions between bacteria and inorganic materials.


2017 ◽  
Vol 114 (48) ◽  
pp. E10455-E10464 ◽  
Author(s):  
Justin A. North ◽  
Anthony R. Miller ◽  
John A. Wildenthal ◽  
Sarah J. Young ◽  
F. Robert Tabita

Numerous cellular processes involvingS-adenosyl-l-methionine result in the formation of the toxic by-product, 5′-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the “universal” methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteriaRhodospirillum rubrumandRhodopseudomonas palustris. In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments.


2008 ◽  
Vol 101 (4) ◽  
pp. 679-690 ◽  
Author(s):  
Perttu E.P. Koskinen ◽  
Steinar R. Beck ◽  
Jóhann Örlygsson ◽  
Jaakko A. Puhakka

2011 ◽  
Vol 102 (4) ◽  
pp. 3810-3818 ◽  
Author(s):  
Serge Hiligsmann ◽  
Julien Masset ◽  
Christopher Hamilton ◽  
Laurent Beckers ◽  
Philippe Thonart

Sign in / Sign up

Export Citation Format

Share Document