Insight into energy dissipation behavior of a SDOF structure controlled by the pounding tuned mass damper system

Author(s):  
Jingcai Zhang ◽  
Chunwei Zhang ◽  
Qichao Xue
2019 ◽  
Vol 9 (4) ◽  
pp. 632 ◽  
Author(s):  
Peng Zhang ◽  
Devendra Patil ◽  
Siu Ho

The pounding tuned mass damper (PTMD) is a novel vibration control device that can effectively mitigate the undesired vibration of subsea pipeline structures. Previous studies have verified that the PTMD is more effective and robust compared to the traditional tuned mass damper. However, the PTMD relies on a viscoelastic delimiter to dissipate energy through impact. The viscoelastic material can be corroded by the various chemical substances dissolved in the seawater, which means that there can be possible deterioration in its mechanical property and damping ability when it is exposed to seawater. Therefore, we aim to conduct an experimental study on the impact behavior and energy dissipation of the viscoelastic material submerged in seawater in this present paper. An experimental apparatus, which can generate and measure lateral impact, is designed and fabricated. A batch of viscoelastic tapes are submerged in seawater and samples will be taken out for impact tests every month. Pounding stiffness, hysteresis loops and energy dissipated per impact cycle are employed to characterize the impact behavior of the viscoelastic material. The experimental results suggest that the seawater has little influence on the behavior of the viscoelastic tapes. Even after continuous submersion in seawater for 5 years, the pounding stiffness and energy dissipation remains at the same level.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Shilong Li ◽  
J. Tang

Particle damping has the promising potential for attenuating unwanted vibrations in harsh environments especially under high temperatures where conventional damping materials would not be functional. Nevertheless, a limitation of simple particle damper (PD) configuration is that the damping effect is insignificant if the local displacement/acceleration is low. In this research, we investigate the performance of a tuned mass particle damper (TMPD) in which the particle damping mechanism is integrated into a tuned mass damper (TMD) configuration. The essential idea is to combine the respective advantages of these two damping concepts and in particular to utilize the tuned mass damper configuration as a motion magnifier to amplify the energy dissipation capability of particle damper when the local displacement/acceleration of the host structure is low. We formulate a first-principle-based dynamic model of the integrated system and analyze the particle motion by using the discrete element method (DEM). We perform systematic parametric studies to elucidate the damping effect and energy dissipation mechanism of a TMPD. We demonstrate that a TMPD can provide significant vibration suppression capability, essentially outperforming conventional particle damper.


2012 ◽  
Vol 602-604 ◽  
pp. 1536-1540
Author(s):  
Nan Ge ◽  
Hai Bin Chen ◽  
Yue Wu

A theoretical analyzing approach about a novel tuned mass damper system, FPS-TMD, was derived according to Lagrange Equation. The solution was presented with Newmark-β method and was programmed with MTALAB software. Computation results show that the maximum storey drift, inter-storey drift, storey velocity and acceleration were significantly decreased with FPS-TMD system. The slide radius, slip friction coefficient and the tuned mass will exert rather large influence upon the efficiency of seismic mitigation and energy dissipation. The system will exhibit the best efficiency with the slide radius being 0.8m, the slip friction factor being 0.4, and the tuned mass M/m=0.5.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3986 ◽  
Author(s):  
Peng Zhang ◽  
Jinwei Jiang ◽  
Guangtao Lu

In previous studies, the pounding tuned mass damper (PTMD) has been successfully demonstrated to mitigate the undesired vibration of a variety of structures at room temperature. The advantages of the PTMD over the traditional tuned mass damper (TMD) has been verified through theoretical analysis and experimental investigations. However, the PTMD relies on an impact layer made of viscoelastic material to improve its vibration control performance and robustness against detuning effect. The energy dissipation of the viscoelastic material can be affected by the changes of environmental temperature. Therefore, this paper aims to study the impact damping behavior of the viscoelastic material in the low temperature environment of the sea bed where the PTMD is expected to control vibrations of subsea pipelines. The experimental apparatus fabricated in the previous study to generate and measure the lateral impact was housed inside a refrigerator. The experimental results indicate that the pounding stiffness decreased whereas the energy dissipation increased in the low temperature environment. Moreover, an impact fatigue test was also performed in the low temperature environment and compared with the room temperature case. Experimental results from a previous study show that the viscoelastic material was damaged after 36,000 cycles of impacts in the room temperature and a cyclic hardening–softening process was observed. However, in the low temperature environment, the viscoelastic material was damaged after 50,000 cycles of impacts and the cyclic hardening–softening process was not observed. As the impact cycle grew, the pounding stiffness decreased from 53,000 N/m1.5 to 17,000 N/m1.5 and the energy dissipation increased from 46.12 J/m per cycle to 65.4 J/m per cycle.


2020 ◽  
Vol 22 (4) ◽  
pp. 983-990
Author(s):  
Konrad Mnich

AbstractIn this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.


Author(s):  
Marcelio Ronnie Dantas de Sá ◽  
Armando Wilmans Nunes da Fonseca Júnior ◽  
Yuri Moraes ◽  
Antonio Almeida Silva

Tuned mass dampers (TMD) are one of the most reliable devices to control the vibration of the structure. The optimum mass ratio required for a single tuned mass damper (STMD) is evaluated corresponding to the fundamental natural frequency of the structure. The effect of STMD and Multiple tuned mass dampers (MTMD) on a G+20 storey structure are studied to demonstrate the damper’s effectiveness in seismic application. The location and number of tuned mass dampers are studied to give best structural performance in maximum reduction of seismic response for El Centro earthquake data. The analysis results from SAP 2000 software tool shows damper weighing 2.5% of the total weight of the structure effectively reduce the response of the structure. Study shows that introduction of 4-MTMD at top storey can effectively reduce the response by 10% more in comparison to single tuned mass damper. The use of MTMD of same mass ratio that of STMD is more effective in seismic response.


Sign in / Sign up

Export Citation Format

Share Document