Numerical models and ductile ultimate deformation response of post-tensioned self-centering moment connections

2009 ◽  
Vol 38 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Hyung-Joon Kim ◽  
Constantin Christopoulos
2017 ◽  
Vol 3 (3) ◽  
pp. 152-159
Author(s):  
Ahmadreza Torabipour ◽  
M. R. Shiravand

One of the newest steel beam-column joints to replace conventional welded connections, post-tensioned connection steel is with the upper and lower angles. In this connection are high-strength steel strands that parallel beam web and angles between beams and column. Actually high resistance strands and upper and lower angles respectively are provider centralization properties and energy dissipation capacity of the connection. The benefits of post-tensioned steel can be used in connection with the centralization and lack of relative displacement (drift) persistent, stay elastic core components such as connecting beams, columns and fountains connection, appropriate initial stiffness and joint manufacture with materials and traditional skills. . In this study, numerical modelling in Abaqus software, the results of the analysis were compared with the results of laboratory samples and the results showed that the two together are a perfect match. After validation, parameters influential centrist connection then pulled the thick angles in three numerical models were evaluated.  The results show that by increasing the thickness of the angles, increase energy dissipation capacity and ductility connection and the β₁ value does not experience tangible changes with changes in angle thickness.


2020 ◽  
pp. 136943322098165
Author(s):  
Kai Qian ◽  
Hai-Ning Hu ◽  
Yun-Hao Weng ◽  
Xiao-Fang Deng ◽  
Ting Huang

This paper presents the high-fidelity finite-element-based numerical models for modeling the behavior of prestressed concrete (PC) beam-column substructures to resist progressive collapse under column removal scenario. After careful calibration against data, the validated numerical models are further employed to shed light on the influence of bonded post-tensioned tendons (BPT) with a parabolic profile on the load transfer mechanisms of PC frames against progressive collapse. The effects of parameters, including initial effective prestress, profile of tendon and lateral constraint stiffness at the beam ends, are also investigated. The study shows that, due to the presence of prestressed tendons, the mobilization of compressive arch action in the beam at small deflections demands stronger lateral constraints, and the ultimate load resistance of PC beam-column substructures depends on combined catenary action from non-prestressed reinforcement and BPT at large deflections. For a given constraint stiffness, the initial effective prestress of BPT has less significant effect on the overall structural behavior. For prestressed tendon, a straight profile usually employed in structural strengthening can improve the initial structural stiffness and yield strength, but is less effective in enhancing the ultimate resistance against progressive collapse than the parabolic profile.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 964
Author(s):  
Eduardo Nuñez ◽  
Guillermo Parraguez ◽  
Ricardo Herrera

Brittle failure mechanisms can affect the seismic performance of structures composed of intersecting moment resisting frames, if the biaxial effects are not considered. In this research, the bidirectional cyclic response of H-columns with weak-axis moment connections was studied using numerical models. Several configurations of joints with bidirectional effects and variable axial loads were studied using the finite element method (FEM) in ANSYS v17.2 software. The results obtained showed a ductile behavior when cyclic loads are applied. No evidence of brittle failure mechanisms in the studied joint configurations was observed, in line with the design philosophy established in current seismic provisions. However, beams connected to the column minor axis reached a partially restrained behavior. Joints with four beams connected to the column exhibited a partially restrained behavior for all axial load levels. An equivalent force displacement method was used to compare the hysteretic response of 2D and 3D joints, obtaining higher deformations in 3D joints with respect to 2D joints with a similar number of connected beams. Consequently, design procedures are not capable of capturing the 3D deformation phenomenon.


2004 ◽  
Vol 130 (2) ◽  
pp. 244-252 ◽  
Author(s):  
Isao Nishiyama ◽  
Toshiaki Fujimoto ◽  
Toshiyuki Fukumoto ◽  
Kenzo Yoshioka

2012 ◽  
Vol 79 (5) ◽  
Author(s):  
Sunil Neupane ◽  
Samer Adeeb ◽  
Roger Cheng ◽  
James Ferguson ◽  
Michael Martens

The design equations for pipelines subjected to both internal pressure and longitudinal loading are based on the isotropic hardening plasticity model. However, high strength steel (HSS) pipelines exhibit plastic anisotropy, which cannot be incorporated in the traditional isotropic hardening plasticity model. The stress strain behaviors of HSS in the longitudinal and the circumferential directions are different. Thus, it would not be desirable to adopt the same design equations based on the isotropic hardening plasticity model for HSS pipelines. The design equations of HSS steel pipelines have to be developed by solving numerical models incorporating a suitable material plasticity constitutive model for the HSS that can deal with the exhibited plastic anisotropy. In this paper, various plasticity models are studied and an appropriate plasticity model is adopted and calibrated to model the plastic anisotropy exhibited by the HSS.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Ahmed A. Osman ◽  
Sherif A. Mourad

AbstractIn this study, numerical models were developed to predict the behavior of steel extended end-plate moment connections subjected to static and blast-like loading. Two types of extended end-plate connections were considered, stiffened, and unstiffened, with pretensioned bolts. The models were verified by comparing the results with published experimental data. The models were used to compute the moment-rotation curves for the connection under static loading, and then under different blast durations. The pressure impulse diagram and the energy dissipation for the connection under dynamic loading were determined. The failure modes were examined, and the numerical results were compared with the simplified models presented in codes and standards. Improvement in the performance of the connection by adding one or two stiffeners was demonstrated. For the configuration studied, introducing a stiffener increased plastic dissipation energy for blast loading by 45% compared to the unstiffened connection, whereas under static loading, the plastic energy dissipation for stiffened connection, SC2, was higher than the unstiffened connection by 30%. A conservative estimate for the dynamic increase factor (DIF) was found to be 1.2 for steel yield stress and 1.05 for bolt failure.


Author(s):  
Minjuan He ◽  
Xiaofeng Sun ◽  
Zheng Li

This paper presents the direct displacement-based design (DDD) procedure, structural modelling method, and structural performance calibration for post-tensioned CLT shear wall structures (PT-CLTstrs). Numerical models of the post-tensioned (PT) CLT shear walls were developed and calibrated with the experimental results. Based on the developed shear wall models, parametric analysis were conducted to investigate the lateral performance influencing factors. Then, a DDD procedure was developed and demonstrated by the design examples of a set of 8-, 12-, and 16-storey PT-CLTStrs. The corresponding simplified structural models were developed, and then a series of pushover and time-history dynamic analysis were conducted to calibrate the calculated structural performance objectives with the design targets of the DDD procedure. Finally, the empirical cumulative distribution functions (CDFs) of the maximum inter-storey drift (MaxISDR) were constructed. It is found that when the width of the PT CLT shear walls increases from 1.8 m to 3.0 m, the base shear at the drift of 2.0 % increases by twice accordingly. When the diameter of the PT strand increases from 15.2 mm to 34.6 mm, the base shear at the drift of 2.0 % increases by up to five times. Additionally, the MaxISDR limitation of the PT-CLTStrs is recommended as 2.2 % under the collapse prevention (CP) hazard level. The study results can serve as guidelines for the development of engineering design methods for the PT-CLTStrs.


Sign in / Sign up

Export Citation Format

Share Document