Graphene for hydrogen energy storage ‐ A comparative study on GO and rGO employed in a modified reversible PEM fuel cell

Author(s):  
Himanshu Jindal ◽  
Amandeep Singh Oberoi ◽  
Inderjeet Singh Sandhu ◽  
Mansi Chitkara ◽  
Baljit Singh
2014 ◽  
Vol 28 ◽  
pp. 1-12 ◽  
Author(s):  
Zhongliang Li ◽  
Rachid Outbib ◽  
Daniel Hissel ◽  
Stefan Giurgea

2011 ◽  
Vol 145 (2) ◽  
pp. 49-57
Author(s):  
Arkadiusz MAŁEK

Supply method of the fuel cell cathode side significantly affects the durability and efficiency of the hydrogen energy conversion. A fuel cell is a stochastic object. The paper presents air flow control of the PEM fuel cell in order to find and hold the maximum value of the net power produced by the fuel cell stack, regardless of changes of the parameters of the object of control and its outer environment. The Application of an adaptive extremum control with bi-parameter identification provide automatic adjustment of the parameters of a controller to the changing characteristics of an object. The adaptive algorithm contains a number of variables and signals that support the estimation process. The quality and speed of finding an optimal point depends on their values.


2022 ◽  
Vol 334 ◽  
pp. 05002
Author(s):  
Andrea Pietra ◽  
Marco Gianni ◽  
Nicola Zuliani ◽  
Stefano Malabotti ◽  
Rodolfo Taccani

This study is focused on the possible application of hydrogen-fed PEM fuel cells on board ships. For this purpose, a test plant including a 100 kW generator suitable for marine application and a power converter including a supercapacitor-based energy storage system has been designed, built and experimentally characterised. The plant design integrates standard industrial components suitable for marine applications that include the technologies with the highest degree of maturity currently available on the market. Fuel Cell generator and power converter have been specifically designed by manufacturers to fit the specific plant needs. The experimental characterisation of the plant has been focused on the evaluation of the efficiency of the single components and of the overall system. Results shows a PEM fuel cell efficiency of 48% (when all auxiliaries are included) and an overall plant efficiency, including power conditioning, of about 45%. From load variation response tests, the fuel cell response time was maximum 2 seconds without supercapacitors and increased up to 20 seconds with supercapacitors connected, reducing the stress on the fuel cell generator. Experimental results confirm that PEM fuel cells, when supported by a suitably sized energy storage system, represent a viable technical solution for zero-emission power generation on board ships.


Sign in / Sign up

Export Citation Format

Share Document