Assessing the impact of current control on the thermal management performance of thermoelectric cooling systems

Author(s):  
Zhaoyang Liu ◽  
Aikun Tang ◽  
Chunxian Shan ◽  
Xuezhen Yuan ◽  
Jianming Li
2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Y. Sungtaek Ju

Pulsed thermoelectric cooling is an attractive approach for the site specific thermal management of infrared sensors and other low-heat flux devices. Intense Joule heating caused by electrical interface resistance, however, can severely degrade pulsed cooling performance. Numerical simulations are used to quantify the impact of the interface resistance on pulsed thermoelectric cooling. The degradation in performance is most pronounced for microcoolers that have small bulk resistivity at high pulse amplitudes. Our work also forms a basis for new techniques to probe interfaces in TE devices for energy harvesting as well as cooling applications.


2021 ◽  
Author(s):  
Alexander V. Korobko ◽  
Sana Fateh

Abstract The recent increase in complexity of computations and the expansion of edge computing have led to the emergence of high power density data centers with an urgent demand for more advanced thermal management systems. Two-phase passive cooling systems such as thermosyphons and heat pipes have been widely used in industry to maintain the temperature of the servers below the threshold of failure and carry away a large quantity of heat from a small area. Such systems are economically viable and sustainable since they have no moving parts and consume lower power. However, an upgrade to these cooling systems is imminent due to the ever-increasing power densities of the data centers and more challenging thermal management issues faced by the industry. Nanofluids have emerged recently as a new class of cooling liquids claiming to enhance the heat transfer performance in single and two-phase cooling systems. As per several studies presented in this paper, the thermal performance of thermosyphons is shown to be enhanced by employing nanofluids. In this paper, a comprehensive review is presented on the effect of nanofluids in improving the Critical Heat Flux (CHF) and Heat Transfer Coefficient (HTC) in two-phase cooling systems. The boiling phenomenon and working principles of thermosyphons will be discussed to understand the underlying mechanisms affecting heat transfer in the evaporator region, where the heat is absorbed from the source. The impact of nanoparticle features, concentration, and deposition pattern on HTC enhancement will also be studied. Additionally, estimates of the heat dissipation improvement by using nanofluids along with the bottlenecks and challenges faced in applying such fluids practically are reviewed as well. In conclusion, recommendations are made for future research needed to overcome the risks and commercialize the nanofluids in two-phase cooling systems for providing significant improvement in heat transfer performance as compared to conventional working fluids.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


2021 ◽  
Author(s):  
Robert A. Clark ◽  
Mingxuan Shi ◽  
Jonathan Gladin ◽  
Dimitri Mavris

Abstract The design of an aircraft thermal management system (TMS) that is capable of rejecting heat loads into the bypass stream of a typical low-bypass ratio turbofan engine, or a ram-air stream, is investigated. The TMS consists of an air cycle system (ACS), which is similar to the typical air cycle machines (ACMs) used on current aircraft, both military and commercial. This system turbocharges compressor bleed air and uses heat exchangers in a ram air stream or the engine bypass stream to cool the engine bleed air prior to expanding it to low temperatures suitable for heat rejection. In this study, a simple low-bypass ratio afterburning turbofan engine was modeled in NPSS to provide boundary conditions to the TMS system throughout the flight envelope of a typical military fighter aircraft. The engine was sized to produce sea level static (SLS) thrust roughly equivalent to that of an F-35-class engine. Two different variations of the TMS system, a ram air cooled and a bypass air cooled, were sized to handle a given demanded aircraft heat load, which might include environmental control system (ECS) loads, avionics cooling loads, weapons system loads, or other miscellaneous loads. The architecture and modeling of the TMS is described in detail, and the ability of the sized TMS to reject these demanded aircraft loads throughout several key off-design points was analyzed, along with the impact of ACS engine bleeds on engine thrust and fuel consumption. A comparison is made between the cooling capabilities of the ram-air stream versus the engine bypass stream, along with the benefits and drawbacks of each cooling stream. It is observed that the maximum load dissipation capability of the TMS is tied directly to the amount of engine bleed flow, while the level of bleed flow required is set by the temperature conditions imposed by the aircraft cooling system and the heat transfer fluid used in the ACS thermal transport bus. Furthermore, the higher bypass stream temperatures significantly limit the thermodynamic viability and capability of a TMS designed with bypass air as the ultimate heat sink. The results demonstrate the advantage that adaptive, variable cycle engines (VCEs) may have for future military aircraft designs, as they combine the best features of the two TMS architectures that were studied here.


2017 ◽  
Vol 7 (3) ◽  
pp. 27
Author(s):  
Kyle B Davidson ◽  
Bahram Asiabanpour ◽  
Zaid Almusaied

The shortage of freshwater resources in the world has developed the need for sustainable, cost-effective technologies that can produce freshwater on a large scale. Current solutions often have extensive manufacturing requirements, or involve the use of large quantities of energy or toxic chemicals. Atmospheric water generating solutions that minimize the depletion of natural resources can be achieved by incorporating biomimetics, a classification of design inspired by nature. This research seeks to optimize thermoelectric cooling systems for use in water harvesting applications by analyzing the different factors that affect surface temperature and water condensation in TEC devices. Further experiments will be directed towards developing a robust, repeatable system, as well as an accurate measurement system. Surface modifications, device structure and orientation, and power generation will also be studied to better understand the ideal conditions for maximum water collection in thermoelectric cooling systems.


2018 ◽  
Vol 169 ◽  
pp. 186-193 ◽  
Author(s):  
Xing Lu ◽  
Dongliang Zhao ◽  
Ting Ma ◽  
Qiuwang Wang ◽  
Jintu Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document