scholarly journals Numerical simulation of the stress field and fault sealing of complex fault combinations in Changning area, Southern Sichuan Basin, China

Author(s):  
Jiajie Li ◽  
Qirong Qin ◽  
Hu Li ◽  
Yuanfei Wan
2007 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan

Numerical simulation method is employed in the article to analyze the stress field of thick 7B04 aluminum alloy board during manufacturing procedure of solution treatment, calendaring and stretching. The simulation results show that the surface of the board endures compressive stress while the core segment endures tensile stress, and the distribution of the stress is very inhomogeneous. The calendaring procedure helps to decrease the stress and redistribute the stress uniformly, but it also leads to stress concentration at the two ends of the board, which engenders bad influence on the subsequent processing. The board deforms plastically when being stretched, thus the stress decreases greatly and is redistributed uniformly.


2013 ◽  
Vol 864-867 ◽  
pp. 2418-2421
Author(s):  
Li Yang ◽  
Jian Lin Li ◽  
Shi Wei Luo

The tectonic stress field plays an important role in the research of crustal stability, fault activity and the geological disaster effect. On the basis of related geological data, ANSYS and FLAC3D are applied in this paper to set up a reasonable geological structure model and boundary conditions, aiming at making a numerical simulation analysis of tectonic stress field in the southeast of the Qinghai-Tibet plateau. The result and the measured data fit better, which provides a reference for the further study of the project.


2016 ◽  
Vol 43 (8) ◽  
pp. 0802007
Author(s):  
汪静雪 Wang Jingxue ◽  
章艳 Zhang Yan ◽  
张兴权 Zhang Xingquan ◽  
戚晓利 Qi Xiaoli ◽  
裴善报 Pei Shanbao ◽  
...  

2011 ◽  
Vol 216 ◽  
pp. 218-222 ◽  
Author(s):  
Wen Li Wang ◽  
Wei Lian Qu ◽  
Jie He

The dynamic stress-strain and welding residual stress during welding are the significant factors which lead to welded cracking and debasement of the joint properties. Therefore, the welding residual stresses are still very importang problems.A large number of guyed mast accidents study shows that the welded joints of earplate and shaft were easily to be destroyed. Therefore, the accurate assessment of the guyed maste earplate joint substructure’s welding residual stress is of great significance. The theory and method of simulation of the welding temperature field and welding stress field by finite element method is first introduced, and then the earplate substructure refine model is established which was up to the welding numerical simulation. Based on ANSYS software’s APDL language to apply the welding heat source load, we can get and save the welding temperature field results at each time. Conversing the thermal analysis element into structure element to finish the caculation of the welding stress field. Eventually by adopting the elimination remnant technology to remove the part of welding residual stresses, we can got the final welding residual stress in different relieving proportion.


2013 ◽  
Vol 345 ◽  
pp. 312-315 ◽  
Author(s):  
Bing Han ◽  
Yan Hua Wang ◽  
Chang Liang Xu

Water-jet cavitation peening is a new technology for surface modification of metallic materials. Compress residual stress layer is induced by impact wave pressure in the submerged cavitating jets processing. Based on ANSYS/LS-DYNA finite element analysis software, residual stress field in the SAE1070 spring steel material surface induced by cavitate-jet water peening process is simulated, the magnitude and variation rules of the residual stress along the layer depth under different conditions is obtained. In order to verify the correctness of the numerical simulation, the size and distribution of residual stress by the X-ray diffraction method. The results show that the numerical simulation and experimental results are well consistent.


Sign in / Sign up

Export Citation Format

Share Document