Testing bedload transport formulae using morphologic transport estimates and field data: lower Fraser River, British Columbia

2005 ◽  
Vol 30 (10) ◽  
pp. 1265-1282 ◽  
Author(s):  
Yvonne Martin ◽  
Darren Ham
1989 ◽  
Vol 26 (7) ◽  
pp. 1440-1452 ◽  
Author(s):  
R. A. Kostaschuk ◽  
M. A. Church ◽  
J. L. Luternauer

The lower main channel of the Fraser River, British Columbia, is a sand-bed, salt-wedge estuary in which variations in velocity, discharge, and bedform characteristics are contolled by river discharge and the tides. Bed-material composition remains consistent over the discharge season and in the long term. Changes in bedform height and length follow but lag behind seasonal fluctuations in river discharge. Migration rates of bedforms respond more directly to river discharge and tidal fall than do height and length. Bedform characteristics were utilized to estimate bedload transport in the estuary, and a strong, direct, but very sensitive relationship was found between bed load and river discharge. Annual bedload transport in the estuary is estimated to be of the order of 0.35 Mt in 1986. Bedload transport in the estuary appears to be higher than in reaches upstream, possibly because of an increase in sediment movement along the bed to compensate for a reduction in suspended bed-material load produced by tidal slack water and the salt wedge.


1980 ◽  
Vol 58 (4) ◽  
pp. 623-625 ◽  
Author(s):  
Terry D. Beacham

A 2-year livetrapping study on Townsend's vole (Microtus townsendii) on Reifel Island in the Fraser River delta in British Columbia, Canada, showed that there was an early stop to summer breeding in the peak phase summer compared with the increasing phase summer. Selective dispersal and death of early-maturing voles may account for this result. A delay occurred in the onset of breeding in the decline phase. Voles in peak density populations had the highest median weights at sexual maturity, and males matured at heavier weights than did females.


2020 ◽  
Author(s):  
Sepidehalsadat Hendi ◽  
Mostafa Gorjian ◽  
Gilles Bellefleur ◽  
Christopher D. Hawkes ◽  
Don White

Abstract. Fiber optic sensing technology has recently become popular for oil and gas, mining, geotechnical engineering, and hydrogeology applications. With a successful track record in many applications, distributed acoustic sensing using straight fiber optic cables has become a method of choice for seismic studies. However, distributed acoustic sensing using straight fiber optic cables is not able to detect off-axial strain, hence a helically wound cable design was introduced to overcome this limitation. The helically wound cable field data in New Afton deposit showed that the quality of the data is tightly dependent on the incident angle (the angle between the ray and normal vector of the surface) and surrounding media. We introduce a new analytical two-dimensional approach to determine the dynamic strain of a helically wound cable in terms of incident angle in response to elastic plane waves propagating through multilayered media. The method can be used to quickly and efficiently assess the effects of various materials surrounding a helically wound cable. Results from the proposed analytical model are compared with results from numerical modeling obtained with COMSOL Multiphysics, for scenarios corresponding to a real installation of helically wound cable deployed underground at the New Afton mine in British Columbia, Canada. Results from the analytical model are consistent with numerical modeling results. Our modeling results demonstrate the effects of cement quality, and casing installment on the quality of the helically-wound cable response. Numerical modeling results and field data suggest that, even if reasonably effective coupling achieved, the soft nature of the rocks in these intervals would result in low fiber strains for the HWC. The proposed numerical modeling workflow would be applied for more complicated scenarios (e.g., non-linear material constitutive behaviour, and the effects of pore fluids). The results of this paper can be used as a guideline for analyzing the effect of surrounding media and incident angle on the response of helically wound cable, optimizing the installation of helically wound cable in various conditions, and to validate boundary conditions of 3-D numerical model built for analyzing complex scenarios.


2004 ◽  
Vol 133 (6) ◽  
pp. 1396-1412 ◽  
Author(s):  
R. J. Beamish ◽  
J. T. Schnute ◽  
A. J. Cass ◽  
C. M. Neville ◽  
R. M. Sweeting

Sign in / Sign up

Export Citation Format

Share Document