scholarly journals How tropical convection couples high moist static energy over land and ocean

2019 ◽  
Author(s):  
Yi Zhang ◽  
Stephan Fueglistaler
2014 ◽  
Vol 71 (10) ◽  
pp. 3747-3766 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Tristan S. L’Ecuyer

Abstract Temporal variability in the moist static energy (MSE) budget is studied with measurements from a combination of different satellites including the Tropical Rainfall Measuring Mission (TRMM) and A-Train platforms. A composite time series before and after the development of moist convection is obtained from the observations to delineate the evolution of MSE and moisture convergences and, in their combination, gross moist stability (GMS). A new algorithm is then applied to estimate large-scale vertical motion from energy budget constraints through vertical-mode decomposition into first and second baroclinic modes and a background shallow mode. The findings are indicative of a possible mechanism of tropical convection. A gradual destabilization is brought about by the MSE convergence intrinsic to the positive second baroclinic mode (congestus mode) that increasingly counteracts a weak MSE divergence in the background state. GMS is driven to nearly zero as the first baroclinic mode begins to intensify, accelerating the growth of vigorous large-scale updrafts and deep convection. As the convective burst peaks, the positive second mode switches to the negative mode (stratiform mode) and introduces an abrupt rise in MSE divergence that likely discourages further maintenance of deep convection. The first mode quickly dissipates and GMS increases away from zero, eventually returning to the background shallow-mode state. A notable caveat to this scenario is that GMS serves as a more reliable metric when defined with a radiative heating rate included to offset MSE convergence.


Author(s):  
Ángel F. Adames ◽  
Scott W. Powell ◽  
Fiaz Ahmed ◽  
Víctor C. Mayta ◽  
J. David Neelin

AbstractObservations have shown that tropical convection is influenced by fluctuations in temperature and moisture in the lower free-troposphere (LFT, 600–850 hPa), as well as moist enthalpy (ME) fluctuations beneath the 850 hPa level, referred to as the deep boundary layer (DBL, 850–1000 hPa). A framework is developed that consolidates these three quantities within the context of the buoyancy of an entraining plume. A “plume buoyancy equation” is derived based on a relaxed version of the weak-temperature gradient (WTG) approximation. Analysis of this equation using quantities derived from the Dynamics of the Madden-Julian Oscillation (DYNAMO) sounding array data reveals that processes occurring within the DBL and the LFT contribute nearly equally to the evolution of plume buoyancy, indicating that processes that occur in both layers are critical to the evolution of tropical convection. Adiabatic motions play an important role in the evolution of buoyancy both at the daily and longer timescales and are comparable in magnitude to horizontal moisture advection and vertical moist static energy advection by convection. The plume buoyancy equation may explain convective coupling at short timescales in both temperature and moisture fluctuations and can be used to complement the commonly-used moist static energy budget, which emphasizes the slower evolution of the convective envelope in tropical motion systems.


2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2012 ◽  
Vol 25 (8) ◽  
pp. 2782-2804 ◽  
Author(s):  
Joseph Allan Andersen ◽  
Zhiming Kuang

Abstract A Madden–Julian oscillation (MJO)-like spectral feature is observed in the time–space spectra of precipitation and column-integrated moist static energy (MSE) for a zonally symmetric aquaplanet simulated with Superparameterized Community Atmospheric Model (SPCAM). This disturbance possesses the basic structural and propagation features of the observed MJO. To explore the processes involved in propagation and maintenance of this disturbance, this study analyzes the MSE budget of the disturbance. The authors observe that the disturbances propagate both eastward and poleward. The column-integrated longwave heating is the only significant source of column-integrated MSE acting to maintain the MJO-like anomaly balanced against the combination of column-integrated horizontal and vertical advection of MSE and latent heat flux. Eastward propagation of the MJO-like disturbance is associated with MSE generated by both column integrated horizontal and vertical advection of MSE, with the column longwave heating generating MSE that retards the propagation. The contribution to the eastward propagation by the column-integrated horizontal advection of MSE is dominated by synoptic eddies. Further decomposition indicates that the advection contribution to the eastward propagation is dominated by meridional advection of MSE by anomalous synoptic eddies caused by the suppression of eddy activity ahead of the MJO convection. This suppression is linked to the barotropic conversion mechanism, with the gradients of the low-frequency wind experienced by the synoptic eddies within the MJO envelope acting to modulate the eddy kinetic energy. The meridional eddy advection’s contribution to poleward propagation is dominated by the mean state’s (meridionally varying) eddy activity acting on the anomalous MSE gradients associated with the MJO.


2018 ◽  
Vol 115 (19) ◽  
pp. 4863-4868 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land–ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.


2021 ◽  
Author(s):  
Anna Lea Albright ◽  
Sandrine Bony ◽  
Bjorn Stevens ◽  
Raphaela Vogel

<p>The trades form an important link in the atmospheric energy supply, transporting moisture and momentum to the deep tropics and influencing the global hydrological cycle. Trade-wind cumuli are the most ubiquitous cloud type over tropical oceans, yet models disagree in simulating their response to warming. Our study takes advantage of extensive in-situ soundings performed during the EUREC4A campaign, which took place in the downstream trades of the North Atlantic in winter 2020. We employ 1068 dropsondes made in a ca. 2deg x 2deg area to close the moisture and energy budgets of the subcloud layer and atmospheric column. Our motivation for closing moisture and energy budgets using EUREC4A data is two-fold. First, we try to understand which large-scale environmental factors control variability in subcloud layer moisture and moist static energy, given their influence on setting convective potential. Second, we quantify the interplay between clouds and their environment through an energetic lens. The cloud radiative effect emerges as a residual from the total column moist static energy budget, yielding an energetic estimate of clouds. We quantify how this cloud radiative effect compares with coincident satellite and geometric (i.e. cloud fraction) estimates of cloudiness, varies on different scales, and relates to large-scale environmental conditions.</p>


2021 ◽  
Author(s):  
Ines Höschel ◽  
Dörthe Handorf ◽  
Christoph Jacobi ◽  
Johannes Quaas

<p>The loss of Arctic sea ice as a consequence of global warming is changing the forcing of the atmospheric large-scale circulation.  Areas not covered with sea ice anymore may act as an additional heat source.  Associated changes in Rossby wave propagation can initiate tropospheric and stratospheric pathways of Arctic - Mid-latitude linkages.  These pathways have the potential to impact on the large-scale energy transport into the Arctic.  On the other hand, studies show that the large-scale circulation contributes to Arctic warming by poleward transport of moist static energy. This presentation shows results from research within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” funded by the Deutsche Forschungsgemeinschaft.  Using the ERA interim and ERA5 reanalyses the meridional moist static energy transport during high ice and low ice periods is compared.  The investigation discriminates between contributions from planetary and synoptic scale.  Special emphasis is put on the seasonality of the modulations of the large-scale energy transport.</p>


Sign in / Sign up

Export Citation Format

Share Document