scholarly journals Parametric study of prompt methane release impacts on global mean temperature

2020 ◽  
Author(s):  
PattiMichelle Sheaffer
2007 ◽  
Vol 20 (5) ◽  
pp. 843-855 ◽  
Author(s):  
J. A. Kettleborough ◽  
B. B. B. Booth ◽  
P. A. Stott ◽  
M. R. Allen

Abstract A method for estimating uncertainty in future climate change is discussed in detail and applied to predictions of global mean temperature change. The method uses optimal fingerprinting to make estimates of uncertainty in model simulations of twentieth-century warming. These estimates are then projected forward in time using a linear, compact relationship between twentieth-century warming and twenty-first-century warming. This relationship is established from a large ensemble of energy balance models. By varying the energy balance model parameters an estimate is made of the error associated with using the linear relationship in forecasts of twentieth-century global mean temperature. Including this error has very little impact on the forecasts. There is a 50% chance that the global mean temperature change between 1995 and 2035 will be greater than 1.5 K for the Special Report on Emissions Scenarios (SRES) A1FI scenario. Under SRES B2 the same threshold is not exceeded until 2055. These results should be relatively robust to model developments for a given radiative forcing history.


Nature ◽  
1985 ◽  
Vol 316 (6029) ◽  
pp. 657-657 ◽  
Author(s):  
T. M. L. Wigley ◽  
M. E. Schlesinger

2020 ◽  
Author(s):  
Kira Rehfeld ◽  
Raphaël Hébert ◽  
Juan M. Lora ◽  
Marcus Lofverstrom ◽  
Chris M. Brierley

<p>It is virtually certain that the mean surface temperature of the Earth will continue to increase under realistic emission scenarios. Yet comparatively little is known about future changes in climate variability. We explore changes in climate variability over the large range of climates simulated in the framework the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5/6) and the Paleoclimate Modeling Intercomparison Project Phases 3 and 4 (PMIP3/4). <br>This consists of time slice simulations for the Pliocene, Last Interglacial, Last Glacial Maximum, the Mid Holocene and idealized warming experiments (1% CO<sub>2</sub> and abrupt 4xCO<sub>2</sub>), and encompasses climates with a range of 12°C of global mean temperature change. We examine climate variability from different perspectives: from local interannual change, to coherent climate modes and through compositing extremes. The change in the interannual variability of precipitation is strongly dependent upon the local change in the total amount of precipitation. Meanwhile only over tropical land is the change in the interannual temperature variability positively correlated to temperature change, and then weakly. In general, temperature variability is inversely related to mean temperature change - with analysis of power spectra demonstrating that this holds from intra-seasonal to multi-decadal timescales. We systematically investigate changes in the standard deviation of modes of climate variability. Overall, no generalisable pattern emerges. Several modes do show, sometimes weak, increasing variability with global mean temperature change (most notably the Atlantic Zonal Mode), but also the El Niño/Southern Oscillation indices (NINO3.4 and NINO4). The annular modes in the Northern (Southern) hemisphere show only weakly increasing (decreasing) relationships. <br>By compositing extreme precipitation events across the ensemble, we demonstrate that the atmospheric drivers dominating rainfall variability in Mediterranean climates persist throughout palaeoclimate and future simulations. The robust nature of the response of climate variability in model simulations, between both cold and warm climates and across multiple timescales, suggests that observations and proxy reconstructions could provide a meaningful constraint on climate variability in future projections.</p>


2020 ◽  
Author(s):  
Martin B. Stolpe ◽  
Kevin Cowtan ◽  
Iselin Medhaug ◽  
Reto Knutti

Abstract Global mean temperature change simulated by climate models deviates from the observed temperature increase during decadal-scale periods in the past. In particular, warming during the ‘global warming hiatus’ in the early twenty-first century appears overestimated in CMIP5 and CMIP6 multi-model means. We examine the role of equatorial Pacific variability in these divergences since 1950 by comparing 18 studies that quantify the Pacific contribution to the ‘hiatus’ and earlier periods and by investigating the reasons for differing results. During the ‘global warming hiatus’ from 1992 to 2012, the estimated contributions differ by a factor of five, with multiple linear regression approaches generally indicating a smaller contribution of Pacific variability to global temperature than climate model experiments where the simulated tropical Pacific sea surface temperature (SST) or wind stress anomalies are nudged towards observations. These so-called pacemaker experiments suggest that the ‘hiatus’ is fully explained and possibly over-explained by Pacific variability. Most of the spread across the studies can be attributed to two factors: neglecting the forced signal in tropical Pacific SST, which is often the case in multiple regression studies but not in pacemaker experiments, underestimates the Pacific contribution to global temperature change by a factor of two during the ‘hiatus’; the sensitivity with which the global temperature responds to Pacific variability varies by a factor of two between models on a decadal time scale, questioning the robustness of single model pacemaker experiments. Once we have accounted for these factors, the CMIP5 mean warming adjusted for Pacific variability reproduces the observed annual global mean temperature closely, with a correlation coefficient of 0.985 from 1950 to 2018. The CMIP6 ensemble performs less favourably but improves if the models with the highest transient climate response are omitted from the ensemble mean.


2019 ◽  
Vol 26 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Sonja Totz ◽  
Stefan Petri ◽  
Jascha Lehmann ◽  
Erik Peukert ◽  
Dim Coumou

Abstract. Climate and weather conditions in the mid-latitudes are strongly driven by the large-scale atmosphere circulation. Observational data indicate that important components of the large-scale circulation have changed in recent decades, including the strength and the width of the Hadley cell, jets, storm tracks and planetary waves. Here, we use a new statistical–dynamical atmosphere model (SDAM) to test the individual sensitivities of the large-scale atmospheric circulation to changes in the zonal temperature gradient, meridional temperature gradient and global-mean temperature. We analyze the Northern Hemisphere Hadley circulation, jet streams, storm tracks and planetary waves by systematically altering the zonal temperature asymmetry, the meridional temperature gradient and the global-mean temperature. Our results show that the strength of the Hadley cell, storm tracks and jet streams depend, in terms of relative changes, almost linearly on both the global-mean temperature and the meridional temperature gradient, whereas the zonal temperature asymmetry has little or no influence. The magnitude of planetary waves is affected by all three temperature components, as expected from theoretical dynamical considerations. The width of the Hadley cell behaves nonlinearly with respect to all three temperature components in the SDAM. Moreover, some of these observed large-scale atmospheric changes are expected from dynamical equations and are therefore an important part of model validation.


2020 ◽  
Vol 12 (9) ◽  
pp. 3737
Author(s):  
Osamu Nishiura ◽  
Makoto Tamura ◽  
Shinichiro Fujimori ◽  
Kiyoshi Takahashi ◽  
Junya Takakura ◽  
...  

Coastal areas provide important services and functions for social and economic activities. Damage due to sea level rise (SLR) is one of the serious problems anticipated and caused by climate change. In this study, we assess the global economic impact of inundation due to SLR by using a computable general equilibrium (CGE) model that incorporates detailed coastal damage information. The scenario analysis considers multiple general circulation models, socioeconomic assumptions, and stringency of climate change mitigation measures. We found that the global household consumption loss proportion will be 0.045%, with a range of 0.027−0.066%, in 2100. Socioeconomic assumptions cause a difference in the loss proportion of up to 0.035% without greenhouse gas (GHG) emissions mitigation, the so-called baseline scenarios. The range of the loss proportion among GHG emission scenarios is smaller than the differences among the socioeconomic assumptions. We also observed large regional variations and, in particular, the consumption losses in low-income countries are, relatively speaking, larger than those in high-income countries. These results indicate that, even if we succeed in stabilizing the global mean temperature increase below 2 °C, economic losses caused by SLR will inevitably happen to some extent, which may imply that keeping the global mean temperature increase below 1.5 °C would be worthwhile to consider.


2017 ◽  
Author(s):  
Richard Wartenburger ◽  
Martin Hirschi ◽  
Markus G. Donat ◽  
Peter Greve ◽  
Andy J. Pitman ◽  
...  

Abstract. This article extends a previous study (Seneviratne et al., 2016) to provide regional analyses of changes in climate extremes as a function of projected changes in global mean temperature. We introduce the DROUGHT-HEAT Regional Climate Atlas, an interactive tool to analyse and display a range of well-established climate extremes and water-cycle indices and their changes as a function of global warming. These projections are based on simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5). A selection of example results are presented here, but users can visualize specific indices of interest using the online tool. This implementation enables a direct assessment of regional climate changes associated with global temperature targets, such as the 2 degree and 1.5 degree limits agreed within the 2015 Paris Agreement.


2018 ◽  
Vol 8 (4) ◽  
pp. 325-332 ◽  
Author(s):  
Joeri Rogelj ◽  
Alexander Popp ◽  
Katherine V. Calvin ◽  
Gunnar Luderer ◽  
Johannes Emmerling ◽  
...  

2019 ◽  
Vol 7 (12) ◽  
pp. 1283-1295 ◽  
Author(s):  
Katarzyna B. Tokarska ◽  
Kirsten Zickfeld ◽  
Joeri Rogelj

2019 ◽  
Author(s):  
Inne Vanderkelen ◽  
Jakob Zschleischler ◽  
Lukas Gudmundsson ◽  
Klaus Keuler ◽  
Francois Rineau ◽  
...  

Abstract. Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and projections for the future, preserving the co-variances between variables and the projected changes in variability. Here we present a new experimental design for studying climate change impacts on terrestrial ecosystems and apply it to the UHasselt Ecotron Experiment. The new methodology consists of generating climate forcing along a gradient representative of increasingly high global mean temperature anomalies and uses data derived from the best available regional climate model (RCM) projection. We first identified the best performing regional climate model (RCM) simulation for the ecotron site from the Coordinated Regional Downscaling Experiment in the European Domain (EURO-CORDEX) ensemble with a 0.11° (12.5 km) resolution based on two criteria: (i) highest skill of the simulations compared to observations from a nearby weather station and (ii) representativeness of the multi-model mean in future projections. Our results reveal that no single RCM simulation has the best score for all possible combinations of the four meteorological variables and evaluation metrics considered. Out of the six best performing simulations, we selected the simulation with the lowest bias for precipitation (CCLM4-8-17/EC-EARTH), as this variable is key to ecosystem functioning and model simulations deviated the most for this variable, with values ranging up to double the observed values. The time window is subsequently selected from the RCM projection for each ecotron unit based on the global mean temperature of the driving Global Climate Model (GCM). The ecotron units are forced with 3-hourly output from the RCM projections of the five-year period spanning the year in which the global mean temperature crosses the predefined values. With the new approach, Ecotron facilities become able to assess ecosystem responses on changing climatic conditions, while accounting for the co-variation between climatic variables and their projection in variability, well representing possible compound events. The gradient approach will allow to identify possible threshold and tipping points.


Sign in / Sign up

Export Citation Format

Share Document