scholarly journals Complex Numerical Simulation of the U.S. East Coast and Inland Areas using a Coupled Hydrologic, Hydrodynamic and Ocean model: Application to Hurricane Sandy

2020 ◽  
Author(s):  
Hassan Mashriqui ◽  
Sadiq Sadiq Khan ◽  
Beheen Trimble ◽  
Jon S. Allen ◽  
Ryan Grout ◽  
...  
2015 ◽  
Vol 109 (4) ◽  
pp. 735-749 ◽  
Author(s):  
LAURA VALENTINI

In late 2012, Hurricane Sandy hit the East Coast of the U.S., causing much suffering and devastation. Those who could have easily helped Sandy's victims had a duty to do so. But was this a rightfully enforceable duty of justice, or a nonenforceable duty of beneficence? The answer to this question is often thought to depend on the kind of help offered: the provision of immediate bodily services is not enforceable; the transfer of material resources is. I argue that this double standard is unjustified, and defend a version of what I call “social samaritanism.” On this view, within political communities, the duty to help the needy—whether via bodily services or resource transfers—is always an enforceable demand of justice, except when the needy are reckless; across independent political communities, it is always a matter of beneficence. I defend this alternative double standard, and consider its implications for the case of Sandy.


2013 ◽  
Vol 69 (2) ◽  
pp. I_976-I_981
Author(s):  
Yoshitaka MATSUZAKI ◽  
Shigeo TAKAHASHI ◽  
Masayuki BANNO ◽  
Tomotsuka TAKAYAMA ◽  
Kazuhiro GODA

2014 ◽  
Vol 142 (5) ◽  
pp. 1962-1981 ◽  
Author(s):  
Linus Magnusson ◽  
Jean-Raymond Bidlot ◽  
Simon T. K. Lang ◽  
Alan Thorpe ◽  
Nils Wedi ◽  
...  

Abstract On 30 October 2012 Hurricane Sandy made landfall on the U.S. East Coast with a devastating impact. Here the performance of the ECMWF forecasts (both high resolution and ensemble) are evaluated together with ensemble forecasts from other numerical weather prediction centers, available from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive. The sensitivity to sea surface temperature (SST) and model resolution for the ECMWF forecasts are explored. The results show that the ECMWF forecasts provided a clear indication of the landfall from 7 days in advance. Comparing ensemble forecasts from different centers, the authors find the ensemble forecasts from ECMWF to be the most consistent in the forecast of the landfall of Sandy on the New Jersey coastline. The impact of the warm SST anomaly off the U.S. East Coast is investigated by running sensitivity experiments with climatological SST instead of persisting the SST anomaly from the analysis. The results show that the SST anomaly had a small effect on Sandy’s track in the forecast, but the forecasts initialized with the warm SST anomaly feature a more intense system in terms of the depth of the cyclone, wind speeds, and precipitation. Furthermore, the role of spatial resolution is investigated by comparing four global simulations, spanning from TL159 (150 km) to TL3999 (5 km) horizontal resolution. Forecasts from 3 and 5 days before the landfall are evaluated. While all resolutions predict Sandy’s landfall, at very high resolution the tropical cyclone intensity and the oceanic wave forecasts are greatly improved.


2004 ◽  
Vol 38 (1) ◽  
pp. 61-79 ◽  
Author(s):  
Laurence C. Breaker ◽  
Desiraju B. Rao ◽  
John G.W. Kelley ◽  
Ilya Rivin

This paper discusses the needs to establish a capability to provide real-time regional ocean forecasts and the feasibility of producing them on an operational basis. Specifically, the development of a Regional Ocean Forecast System using the Princeton Ocean Model (POM) as a prototype and its application to the East Coast of the U.S. are presented. The ocean forecasts are produced using surface forcing from the Eta model, the operational mesoscale weather prediction model at the National Centers for Environmental Prediction (NCEP). At present, the ocean forecast model, called the East Coast-Regional Ocean Forecast System (EC-ROFS) includes assimilation of sea surface temperatures from in situ and satellite data and sea surface height anomalies from satellite altimeters. Examples of forecast products, their evaluation, problems that arose during the development of the system, and solutions to some of those problems are also discussed. Even though work is still in progress to improve the performance of EC-ROFS, it became clear that the forecast products which are generated can be used by marine forecasters if allowances for known model deficiencies are taken into account. The EC-ROFS became fully operational at NCEP in March 2002, and is the first forecast system of its type to become operational in the civil sector of the United States.


Author(s):  
Youssef M. A. Hashash ◽  
Sissy Nikolaou ◽  
Beena Sukumaran ◽  
Aaron Sacks ◽  
Michael Burlingame ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


Sign in / Sign up

Export Citation Format

Share Document