scholarly journals Object-oriented parallel algorithms for computing three-dimensional isopycnal flow

2002 ◽  
Vol 39 (7) ◽  
pp. 585-605
Author(s):  
Paul Concus ◽  
Gene H. Golub ◽  
Yong Sun
Author(s):  
Dulceneia Becker ◽  
Joa˜o Roberto Barbosa ◽  
Jesuino Takachi Tomita

This paper concerns the parallelization and optimization of an in-house three-dimensional unstructured finite-volume computational fluid dynamics (CFD) code. It aims to highlight the use of programming techniques in order to speedup computation and minimize memory usage. The motivation for developing an in-house solver is that commercial codes are general and sometimes simulations are not in agreement with actual phenomena. Moreover, in-house models can be developed and easily integrated to the solver. The original code was initially written in Fortran 77 though the most recent added subroutines include Fortran 90 features. Due to language restrictions and the initial project objectives, issues such as memory usage minimization were not considered. The new code uses an object-oriented paradigm aiming to enhance code reuse and increase efficiency during application development. The parallel code is fully written in Fortran 90 using MPI and hence portable to different architectures. Numerical experiments of typical 3D cases, such as flat plate with uniform incoming flow and a converging-diverging supersonic nozzle, were carried out showing good parallel efficiency. The serial version of the ported code has shown a considerable reduction on the execution time compared to the original code. Convergent solutions agree with the solution of the original code.


2012 ◽  
Vol 204-208 ◽  
pp. 4872-4877
Author(s):  
Da Xi Ma ◽  
Xiao Hong Liu ◽  
Li Wei Ma

By analyzing the attributes of three-dimensional space data model, the integrated 3D spatial data adopts object-oriented method for digital landslide modeling. It achieves spatial data modeling for landslide geological entity. An experimental case is given to indicate the feasibility of this approach for spatial data modeling.


1993 ◽  
Vol 2 (4) ◽  
pp. 133-144 ◽  
Author(s):  
Jon B. Weissman ◽  
Andrew S. Grimshaw ◽  
R.D. Ferraro

The conventional wisdom in the scientific computing community is that the best way to solve large-scale numerically intensive scientific problems on today's parallel MIMD computers is to use Fortran or C programmed in a data-parallel style using low-level message-passing primitives. This approach inevitably leads to nonportable codes and extensive development time, and restricts parallel programming to the domain of the expert programmer. We believe that these problems are not inherent to parallel computing but are the result of the programming tools used. We will show that comparable performance can be achieved with little effort if better tools that present higher level abstractions are used. The vehicle for our demonstration is a 2D electromagnetic finite element scattering code we have implemented in Mentat, an object-oriented parallel processing system. We briefly describe the application. Mentat, the implementation, and present performance results for both a Mentat and a hand-coded parallel Fortran version.


2003 ◽  
Vol 89 (1) ◽  
pp. 534-550 ◽  
Author(s):  
M. Zakir ◽  
D. Huss ◽  
J. D. Dickman

The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.


Sign in / Sign up

Export Citation Format

Share Document