Anisotropy characteristics of coal shrinkage/swelling and its impact on coal permeability evolution with CO2injection

2016 ◽  
Vol 6 (5) ◽  
pp. 615-632 ◽  
Author(s):  
Shimin Liu ◽  
Yi Wang ◽  
Satya Harpalani
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2800 ◽  
Author(s):  
Xingxing Liu ◽  
Jinchang Sheng ◽  
Jishan Liu ◽  
Yunjin Hu

The evolution of coal permeability is vitally important for the effective extraction of coal seam gas. A broad variety of permeability models have been developed under the assumption of local equilibrium, i.e., that the fracture pressure is in equilibrium with the matrix pressure. These models have so far failed to explain observations of coal permeability evolution that are available. This study explores the evolution of coal permeability as a non-equilibrium process. A displacement-based model is developed to define the evolution of permeability as a function of fracture aperture. Permeability evolution is tracked for the full spectrum of response from an initial apparent-equilibrium to an ultimate and final equilibrium. This approach is applied to explain why coal permeability changes even under a constant global effective stress, as reported in the literature. Model results clearly demonstrate that coal permeability changes even if conditions of constant effective stress are maintained for the fracture system during the non-equilibrium period, and that the duration of the transient period, from initial apparent-equilibrium to final equilibrium is primarily determined by both the fracture pressure and gas transport in the coal matrix. Based on these findings, it is concluded that the current assumption of local equilibrium in measurements of coal permeability may not be valid.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4651-4658
Author(s):  
Teng Teng ◽  
Xiaoyan Zhu ◽  
Yu-Ming Wang ◽  
Chao-Yang Ren

Gas-flow in coal or rock is hypersensitive to the changes of temperature, confin?ing pressure and gas pressure. This paper implemented a series of experiments to observe the seepage behavior, especially the permeability evolution of CO2 in naturally fractured coal sample under coupled hydro-thermal-mechanical conditions. The experimental results show that coal permeability increases exponentially with the increasing gas pressure, and tends to be linear when the confining pressure is high. Coal permeability decreases exponentially with the increasing confining pressure. Coal permeability decreases with the increasing temperature generally, but it may bounce up when the temperature rises to high. The results provide reference for the projects of coal gas extraction and carbon dioxide geological sequestration.


2019 ◽  
Vol 17 (2) ◽  
pp. 313-327
Author(s):  
Haijun Guo ◽  
Kai Wang ◽  
Yuanping Cheng ◽  
Liang Yuan ◽  
Chao Xu

Abstract Mining is a dynamic fracture process of coal and/or rock. The structural failure of coal bodies will change the coal matrix-fracture characteristics and then affect the distribution characteristics of the coalbed methane (CBM). Because of the structural complexity of coal, the coal matrices and fractures will be assumed to the geometries with rule shapes when the gas seepage characteristics in coals are analyzed. The size of the simplified geometries is the equivalent scale of dual-porosity coal structures (i.e. the equivalent fracture width and equivalent matrix scale). In this paper, according to the reasonable assumptions with regarding to dual-porosity coal structures, a new coal permeability evolution model based on the equivalent characteristics of dual-porosity structure (ECDP model) was built and the effect of the equivalent characteristics of dual-porosity structure on the coal permeability evolution law was analyzed. It is observed that if the initial fracture porosity is constant and the equivalent matrix scale increases, the range in which the permeability of coal rises with rising gas pressure increases; if the equivalent fracture width decreases and the equivalent matrix scale is constant, the range in which the permeability of coal rises with rising gas pressure decreases. The ECDP model is more suitable for revealing the evolution law of the coal permeability when large deformations occur in the coal bodies and/or the coal structure is damaged irreversibly, especially during enhancing CBM recovery.


2015 ◽  
Author(s):  
N. N. Danesh ◽  
Z. Chen ◽  
S. M. Aminossadati ◽  
M. Kizil ◽  
Z. Pan ◽  
...  

2019 ◽  
Vol 29 (4) ◽  
pp. 2451-2465
Author(s):  
Jianhua Li ◽  
Bobo Li ◽  
Zhejun Pan ◽  
Zhihe Wang ◽  
Kang Yang ◽  
...  

Mining Scince ◽  
2019 ◽  
Vol 26 ◽  
Author(s):  
Lulu Zhang ◽  
Bo Li ◽  
Jianping Wei ◽  
Zhihui Wen ◽  
Yongjie Ren

To study coal permeability evolution under the influence of mining actions, we conducted a sensitivity index test on permeability to determine the influence of axial and confining stresses on coal permeability. Loading and unloading tests were performed afterward, and the differences between loading and unloading paths in terms of strain and permeability were studied. A permeability evolution model was built in consideration of absorption swelling and effective stress during modeling. An effective stress calculation model was also built using axial and confining stresses. The calculation results of the two models were compared with experimental data. Results showed that permeability were more sensitive to confining stress than axial stress, and effective stress placed a large weight on confining stress. Large axial and radial deformations at peak strength were observed during unloading. In the unloading phase, the permeability of coal began to increase, and the increment was enhanced by large initial axial stress when confining stress was loaded. permeability sensitivity to axial and confining stresses were used to explain these permeability changes. The calculation results of the models fitted the experimental data well. Therefore, the proposed models can be used to calculate effective stress on the basis of axial and confining stresses and describe permeability change in coal under the influence of mining actions.


Sign in / Sign up

Export Citation Format

Share Document