Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice

Glia ◽  
2009 ◽  
pp. NA-NA ◽  
Author(s):  
Jennifer L. Berard ◽  
Kevin Wolak ◽  
Sylvie Fournier ◽  
Samuel David
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Wen-Tsan Weng ◽  
Ping-Chang Kuo ◽  
Dennis A. Brown ◽  
Barbara A. Scofield ◽  
Destin Furnas ◽  
...  

Abstract Background Multiple sclerosis (MS) is a progressive autoimmune disease characterized by the accumulation of pathogenic inflammatory immune cells in the central nervous system (CNS) that subsequently causes focal inflammation, demyelination, axonal injury, and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model that mimics the key features of MS. Presently, the dietary consumption of foods rich in phenols has been reported to offer numerous health benefits, including anti-inflammatory activity. One such compound, 4-ethylguaiacol (4-EG), found in various foods, is known to attenuate inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects on modulating the CNS inflammatory immune responses remains unknown. Thus, in this study, we assessed the therapeutic effect of 4-EG in EAE using both chronic and relapsing-remitting animal models and investigated the immunomodulatory effects of 4-EG on neuroinflammation and Th1/Th17 differentiation in EAE. Methods Chronic C57BL/6 EAE and relapsing-remitting SJL/J EAE were induced followed by 4-EG treatment. The effects of 4-EG on disease progression, peripheral Th1/Th17 differentiation, CNS Th1/Th17 infiltration, microglia (MG) activation, and blood-brain barrier (BBB) disruption in EAE were evaluated. In addition, the expression of MMP9, MMP3, HO-1, and Nrf2 was assessed in the CNS of C57BL/6 EAE mice. Results Our results showed that 4-EG not only ameliorated disease severity in C57BL/6 chronic EAE but also mitigated disease progression in SJL/J relapsing-remitting EAE. Further investigations of the cellular and molecular mechanisms revealed that 4-EG suppressed MG activation, mitigated BBB disruption, repressed MMP3/MMP9 production, and inhibited Th1 and Th17 infiltration in the CNS of EAE. Furthermore, 4-EG suppressed Th1 and Th17 differentiation in the periphery of EAE and in vitro Th1 and Th17 cultures. Finally, we found 4-EG induced HO-1 expression in the CNS of EAE in vivo as well as in MG, BV2 cells, and macrophages in vitro. Conclusions Our work demonstrates that 4-EG confers protection against autoimmune disease EAE through modulating neuroinflammation and inhibiting Th1 and Th17 differentiation, suggesting 4-EG, a natural compound, could be potentially developed as a therapeutic agent for the treatment of MS/EAE.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 748 ◽  
Author(s):  
Gabriele Di Sante ◽  
Susanna Amadio ◽  
Beatrice Sampaolese ◽  
Maria Elisabetta Clementi ◽  
Mariagrazia Valentini ◽  
...  

S100B is an astrocytic protein acting either as an intracellular regulator or an extracellular signaling molecule. A direct correlation between increased amount of S100B and demyelination and inflammatory processes has been demonstrated. The aim of this study is to investigate the possible role of a small molecule able to bind and inhibit S100B, pentamidine, in the modulation of disease progression in the relapsing–remitting experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. By the daily evaluation of clinical scores and neuropathologic-molecular analysis performed in the central nervous system, we observed that pentamidine is able to delay the acute phase of the disease and to inhibit remission, resulting in an amelioration of clinical score when compared with untreated relapsing–remitting experimental autoimmune encephalomyelitis mice. Moreover, we observed a significant reduction of proinflammatory cytokines expression levels in the brains of treated versus untreated mice, in addition to a reduction of nitric oxide synthase activity. Immunohistochemistry confirmed that the inhibition of S100B was able to modify the neuropathology of the disease, reducing immune infiltrates and partially protecting the brain from the damage. Overall, our results indicate that pentamidine targeting the S100B protein is a novel potential drug to be considered for multiple sclerosis treatment.


2020 ◽  
Vol 6 (4) ◽  
pp. 205521732095980
Author(s):  
Antoine Philippe Fournier ◽  
Erwan Baudron ◽  
Isabelle Wagnon ◽  
Philippe Aubert ◽  
Denis Vivien ◽  
...  

Background Clinical observations support the hypothesis that stressful events increase relapse occurrence in multiple sclerosis patients, while stress-reduction strategies can modulate this effect. However, a direct cause-effect relationship between stress level and relapse cannot be firmly established from these data. Objectives The purpose of this work was to address whether modulation of stress could interfere with symptom relapse in an animal model of multiple sclerosis with relapsing-remitting course. Methods Mice bred in standard or enriched environment were subjected to repeated acute stress during the remission phase of relapsing-remitting PLP-induced experimental autoimmune encephalomyelitis. Results We report that repeated acute stress induced a twofold increase in relapse incidence in experimental autoimmune encephalomyelitis. On the other hand, environmental enrichment reduced relapse incidence and severity, and reversed the effects of repeated acute stress. Conclusion These data provide the platform for further studies on the biological processes that link stress and multiple sclerosis relapses in a suitable animal model.


2020 ◽  
Vol 328 ◽  
pp. 113241
Author(s):  
Diéssica Padilha Dalenogare ◽  
Maria Carolina Theisen ◽  
Diulle Spat Peres ◽  
Maria Fernanda Pessano Fialho ◽  
Débora Denardin Lückemeyer ◽  
...  

2019 ◽  
Vol 116 (45) ◽  
pp. 22710-22720
Author(s):  
Lindsay S. Cahill ◽  
Monan Angela Zhang ◽  
Valeria Ramaglia ◽  
Heather Whetstone ◽  
Melika Pahlevan Sabbagh ◽  
...  

Experimental autoimmune encephalomyelitis (EAE) is the most common model of multiple sclerosis (MS). This model has been instrumental in understanding the events that lead to the initiation of central nervous system (CNS) autoimmunity. Though EAE has been an effective screening tool for identifying novel therapies for relapsing-remitting MS, it has proven to be less successful in identifying therapies for progressive forms of this disease. Though axon injury occurs in EAE, it is rapid and acute, making it difficult to intervene for the purpose of evaluating neuroprotective therapies. Here, we describe a variant of spontaneous EAE in the 2D2 T cell receptor transgenic mouse (2D2+ mouse) that presents with hind-limb clasping upon tail suspension and is associated with T cell-mediated inflammation in the posterior spinal cord and spinal nerve roots. Due to the mild nature of clinical signs in this model, we were able to maintain cohorts of mice into middle age. Over 9 mo, these mice exhibited a relapsing-remitting course of hind-limb clasping with the development of progressive motor deficits. Using a combined approach of ex vivo magnetic resonance (MR) imaging and histopathological analysis, we observed neurological progression to associate with spinal cord atrophy, synapse degradation, and neuron loss in the gray matter, as well as ongoing axon injury in the white matter of the spinal cord. These findings suggest that mild EAE coupled with natural aging may be a solution to better modeling the neurodegenerative processes seen in MS.


Sign in / Sign up

Export Citation Format

Share Document