scholarly journals Natural aerosol direct and indirect radiative effects

2013 ◽  
Vol 40 (12) ◽  
pp. 3297-3301 ◽  
Author(s):  
Alexandru Rap ◽  
Catherine E. Scott ◽  
Dominick V. Spracklen ◽  
Nicolas Bellouin ◽  
Piers M. Forster ◽  
...  
Tellus B ◽  
2009 ◽  
Vol 61 (1) ◽  
Author(s):  
Sebastian Otto ◽  
Eike Bierwirth ◽  
Bernadett Weinzierl ◽  
Konrad Kandler ◽  
Michael Esselborn ◽  
...  

2012 ◽  
Vol 5 (3) ◽  
pp. 176-183 ◽  
Author(s):  
Ali J. Chamkha ◽  
Mohamed Modather ◽  
Saber M.M. EL-Kabeir ◽  
Ahmed M. Rashad

2021 ◽  
Vol 247 ◽  
pp. 118201
Author(s):  
Hao Wu ◽  
Tijian Wang ◽  
Qin'geng Wang ◽  
Yang Cao ◽  
Yawei Qu ◽  
...  

2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.


2013 ◽  
Author(s):  
Guoyong Wen ◽  
Alexander Marshak ◽  
Lorraine Remer ◽  
Robert Levy ◽  
Norman Loeb ◽  
...  

2013 ◽  
Vol 13 (11) ◽  
pp. 5489-5504 ◽  
Author(s):  
C. Spyrou ◽  
G. Kallos ◽  
C. Mitsakou ◽  
P. Athanasiadis ◽  
C. Kalogeri ◽  
...  

Abstract. Mineral dust aerosols exert a significant effect on both solar and terrestrial radiation. By absorbing and scattering, the solar radiation aerosols reduce the amount of energy reaching the surface. In addition, aerosols enhance the greenhouse effect by absorbing and emitting outgoing longwave radiation. Desert dust forcing exhibits large regional and temporal variability due to its short lifetime and diverse optical properties, further complicating the quantification of the direct radiative effect (DRE). The complexity of the links and feedbacks of dust on radiative transfer indicate the need for an integrated approach in order to examine these impacts. In order to examine these feedbacks, the SKIRON limited area model has been upgraded to include the RRTMG (Rapid Radiative Transfer Model – GCM) radiative transfer model that takes into consideration the aerosol radiative effects. It was run for a 6 year period. Two sets of simulations were performed, one without the effects of dust and the other including the radiative feedback. The results were first evaluated using aerosol optical depth data to examine the capabilities of the system in describing the desert dust cycle. Then the aerosol feedback on radiative transfer was quantified and the links between dust and radiation were studied. The study has revealed a strong interaction between dust particles and solar and terrestrial radiation, with several implications on the energy budget of the atmosphere. A profound effect is the increased absorption (in the shortwave and longwave) in the lower troposphere and the induced modification of the atmospheric temperature profile. These feedbacks depend strongly on the spatial distribution of dust and have more profound effects where the number of particles is greater, such as near their source.


2016 ◽  
Vol 55 (1) ◽  
pp. 93-117 ◽  
Author(s):  
Ehrhard Raschke ◽  
Stefan Kinne ◽  
William B. Rossow ◽  
Paul W. Stackhouse ◽  
Martin Wild

AbstractThis study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10 W m−2 each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30 W m−2 over trade wind cumulus regions, yet smaller CRE by about −30 W m−2 over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15 W m−2 smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.


Sign in / Sign up

Export Citation Format

Share Document