scholarly journals Modeling the radiative effects of desert dust on weather and regional climate

2013 ◽  
Vol 13 (11) ◽  
pp. 5489-5504 ◽  
Author(s):  
C. Spyrou ◽  
G. Kallos ◽  
C. Mitsakou ◽  
P. Athanasiadis ◽  
C. Kalogeri ◽  
...  

Abstract. Mineral dust aerosols exert a significant effect on both solar and terrestrial radiation. By absorbing and scattering, the solar radiation aerosols reduce the amount of energy reaching the surface. In addition, aerosols enhance the greenhouse effect by absorbing and emitting outgoing longwave radiation. Desert dust forcing exhibits large regional and temporal variability due to its short lifetime and diverse optical properties, further complicating the quantification of the direct radiative effect (DRE). The complexity of the links and feedbacks of dust on radiative transfer indicate the need for an integrated approach in order to examine these impacts. In order to examine these feedbacks, the SKIRON limited area model has been upgraded to include the RRTMG (Rapid Radiative Transfer Model – GCM) radiative transfer model that takes into consideration the aerosol radiative effects. It was run for a 6 year period. Two sets of simulations were performed, one without the effects of dust and the other including the radiative feedback. The results were first evaluated using aerosol optical depth data to examine the capabilities of the system in describing the desert dust cycle. Then the aerosol feedback on radiative transfer was quantified and the links between dust and radiation were studied. The study has revealed a strong interaction between dust particles and solar and terrestrial radiation, with several implications on the energy budget of the atmosphere. A profound effect is the increased absorption (in the shortwave and longwave) in the lower troposphere and the induced modification of the atmospheric temperature profile. These feedbacks depend strongly on the spatial distribution of dust and have more profound effects where the number of particles is greater, such as near their source.

2013 ◽  
Vol 13 (1) ◽  
pp. 1327-1365 ◽  
Author(s):  
C. Spyrou ◽  
G. Kallos ◽  
C. Mitsakou ◽  
P. Athanasiadis ◽  
C. Kalogeri ◽  
...  

Abstract. Mineral dust aerosols exert a significant effect on both solar and terrestrial radiation. By absorbing and scattering the solar radiation aerosols reduce the amount of energy reaching the surface. In addition, aerosols enhance the greenhouse effect by absorbing and emitting outgoing longwave radiation. Desert dust forcing exhibits large regional and temporal variability due to its short lifetime and diverse optical properties, further complicating the quantification of the Direct Radiative Effect (DRE). The complexity of the links and feedbacks of dust on radiative transfer indicate the need of an integrated approach in order to examine these impacts. In order to examine these feedbacks, the SKIRON limited area model has been upgraded to include the RRTMG (Rapid Radiative Transfer Model – GCM) radiative transfer model that takes into consideration the aerosol radiative effects. It was run for a 6 yr period. Two sets of simulations were performed, one without the effects of dust and the other including the radiative feedback. The results were first evaluated using aerosol optical depth data to examine the capabilities of the system in describing the desert dust cycle. Then the aerosol feedback on radiative transfer has been quantified and the links between dust and radiation have been studied. The study has revealed a strong interaction between dust particles and solar and terrestrial radiation, with several implications on the energy budget of the atmosphere. A profound effect is the increased absorption (in the shortwave and longwave) in the lower troposphere and the induced modification of the atmospheric temperature profile. These feedbacks depend strongly on the spatial distribution of dust and have more profound effects where the number of particles is greater, such as near their source.


2016 ◽  
Author(s):  
Giuliano Liuzzi ◽  
Guido Masiello ◽  
Carmine Serio ◽  
Daniela Meloni ◽  
Claudia Di Biagio ◽  
...  

Abstract. In the context of the ChArMEx campaign, we present here some results concerning the quantitative comparison between simulated and observed radiances during a dust event occurred between June and July 2013 in the southern Mediterranean basin, involving the airmass above Lampedusa island. In particular, comparisons have been performed between radiances as observed by the Infrared Atmospheric Sounder Interferometer (IASI) and those simulated using the σ-IASI-as radiative transfer model, which takes into account aerosol extinction effect through a set of fast parameterizations. Simulations have been carried on with different sets of input complex refractive indices, which take into account the parent soils of the aerosols, and using the high-quality characterization of desert dust aerosol microphysical properties, achieved through direct measurements in the ChArMEx experiment; on the one hand, this comparison has offered the possibility to test the feasibility of the radiative transfer model. On the other hand, this work goes through a direct validation of different refractive indices sets for desert dust in the thermal infrared. Results show a good consistency between calculations and observations, especially in the spectral interval 800–1000 cm−1; moreover, the comparison between calculations and observations suggests that further efforts are needed to better characterize desert dust optical properties in the short wave (above 2000 cm−1). In any case, we show that it is necessary to properly tune the refractive indices according to the geographical origin of the observed aerosol.


2013 ◽  
Vol 13 (1) ◽  
pp. 2415-2456 ◽  
Author(s):  
L. Zhang ◽  
Q. B. Li ◽  
Y. Gu ◽  
K. N. Liou ◽  
B. Meland

Abstract. Atmospheric mineral dust particles exert significant direct radiative forcings and are critical drivers of climate change. Here, we use the GEOS-Chem global three-dimensional chemical transport model (3-D CTM) coupled online with the Fu-Liou-Gu (FLG) radiative transfer model (RTM) to investigate the dust radiative forcing and heating rates based on different dust vertical profiles. The coupled calculations using a realistic dust vertical profile simulated by GEOS-Chem minimize the physical inconsistencies between 3-D CTM aerosol fields and the RTM. The use of GEOS-Chem simulated aerosol optical depth (AOD) vertical profiles as opposed to the FLG prescribed AOD vertical profiles leads to greater and more spatially heterogeneous changes in estimated radiative forcing and heating rate produced by dust. Both changes can be attributed to a different vertical structure between dust and non-dust source regions. Values of the dust AOD are much larger in the middle troposphere, though smaller at the surface when the GEOS-Chem simulated AOD vertical profile is used, which leads to a much stronger heating rate in the middle troposphere. Compared to FLG vertical profile, the use of GEOS-Chem vertical profile reduces the solar radiative forcing effect by about 0.2–0.25 W m−2 and the Infrared (IR) radiative forcing over the African and Asia dust source regions by about 0.1–0.2 W m−2. Differences in the solar radiative forcing at the surface between using the GEOS-Chem vertical profile and the FLG vertical profile are most significant over the Gobi desert with a value of about 1.1 W m−2. The radiative forcing effect of dust particles is more pronounced at the surface over the Sahara and Gobi deserts by using FLG vertical profile, while it is less significant over the downwind area of Eastern Asia.


2021 ◽  
Author(s):  
Babak Jahani ◽  
Hendrik Andersen ◽  
Josep Calbó ◽  
Josep-Abel González ◽  
Jan Cermak

Abstract. This study presents an approach for quantification of cloud-aerosol transition zone broadband longwave radiative effects at the top of the atmosphere (TOA) during daytime over the ocean, based on satellite observations and radiative transfer simulation. Specifically, we used several products from MODIS (Moderate Resolution Imaging Spectroradiometer) and CERES (Clouds and the Earth’s Radiant Energy System) sensors for identification and selection of CERES footprints with horizontally homogeneous transition zone and clear-sky conditions. For the selected transition zone footprints, radiative effect was calculated as the difference between the instantaneous CERES TOA upwelling broadband longwave radiance observations and corresponding clear-sky radiance simulations. The clear-sky radiances were simulated using the Santa Barbara DISORT Atmospheric Radiative Transfer model fed by the hourly ERA5 reanalysis (fifth generation ECMWF reanalysis) atmospheric and surface data. The CERES radiance observations corresponding to the clear-sky footprints detected were also used for validating the simulated clear-sky radiances. We tested this approach using the radiative measurements made by the MODIS and CERES instruments onboard Aqua platform over the south-eastern Atlantic Ocean during August 2010. For the studied period and domain, transition zone radiative effect (given in flux units) is on average equal to 8.0 ± 3.7 W m−2 (heating effect; median: 5.4 W m−2), although cases with radiative effects as large as 50 W m−2 were found.


2005 ◽  
Vol 44 (1) ◽  
pp. 72-85 ◽  
Author(s):  
M. N. Deeter ◽  
J. Vivekanandan

Abstract Measurements from passive microwave satellite instruments such as the Advanced Microwave Sounding Unit B (AMSU-B) are sensitive to both liquid and ice cloud particles. Radiative transfer modeling is exploited to simulate the response of the AMSU-B instrument to mixed-phase clouds over land. The plane-parallel radiative transfer model employed for the study accounts for scattering and absorption from cloud ice as well as absorption and emission from trace gases and cloud liquid. The radiative effects of mixed-phase clouds on AMSU-B window channels (i.e., 89 and 150 GHz) and water vapor line channels (i.e., 183 ± 1, 3, and 7 GHz) are studied. Sensitivities to noncloud parameters, including surface temperature, surface emissivity, and atmospheric temperature and water vapor profiles, are also quantified. Modeling results indicate that both cloud phases generally have significant radiative effects and that the 150- and 183 ± 7-GHz channels are typically the most sensitive channels to integrated cloud properties (i.e., liquid water path and ice water path). However, results also indicate that AMSU-B measurements alone are probably insufficient for retrieving all mixed-phase cloud properties of interest. These results are supported by comparisons of AMSU-B observations of a mixed-phase cloud over the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site with corresponding calculated clear-sky values.


2012 ◽  
Vol 12 (3) ◽  
pp. 6593-6622 ◽  
Author(s):  
A. Valenzuela ◽  
F. J. Olmo ◽  
H. Lyamani ◽  
M. Antón ◽  
A. Quirantes ◽  
...  

Abstract. The instantaneous values of the aerosol radiative forcing (ARF) at the surface and the top of the atmosphere (TOA) were calculated during desert dust events occurred at Granada (Southeastern Spain) from 2005 to 2010. For that, the SBDART radiative transfer model was utilized to simulate the global irradiance values (0.3–2.8 μm) at the surface and TOA using as input the aerosol properties derived from a CIMEL sun-photometer measurements and an inversion methodology that uses the sky radiance measurements in principal plane configuration and non-spherical particle shapes approximation. The SBDART modeled global irradiances at surface have been successfully validated against experimental measurements obtained by CM-11 pyranometer, indicating the reliability of the radiative transfer model used in this work for the ARF calculations. The monthly ARF values at surface ranged from −32 W m−2 to −46 W m−2, being larger in April and July than in the rest of months. The seasonal ARF evolution was inconsistent with seasonal aerosol optical depth (AOD) variation due to the effects induced by other aerosol parameter such as the single scattering albedo. The ARF at TOA changed from −9 W m−2 to −29 W m−2. Thus, the atmospheric ARF values (ARF at TOA minus ARF at surface) ranged from +15 to +35 W m−2. These results suggest that the African dust caused local atmospheric heating over the study location. The instantaneous aerosol radiative forcing efficiency (ARFE), aerosol radiative forcing per unit of AOD (440 nm), at surface and TOA during African desert dust events was evaluated according to the desert dust source origins. The ARFE values at surface were relatively high (in absolute term) and were −157 ± 20 (Sector A), −154 ± 23 (Sector B), and −147 ± 23 (Sector C) W m−2. These values were larger than many of the values found in literature which could be due to the presence of more absorbing atmospheric particles during African desert dust intrusions over our study area. Finally, our ARF computations showed good agreement with the corresponding ARF calculated by AERONET network.


2017 ◽  
Vol 10 (2) ◽  
pp. 599-615 ◽  
Author(s):  
Giuliano Liuzzi ◽  
Guido Masiello ◽  
Carmine Serio ◽  
Daniela Meloni ◽  
Claudia Di Biagio ◽  
...  

Abstract. In the context of the ChArMEx campaign, we present here some results concerning the quantitative comparison between simulated and observed radiances in the presence of atmospheric desert dust, between June and July 2013 in the southern Mediterranean Basin, in the air mass above the island of Lampedusa. In particular, comparisons have been performed between radiances as observed by the Infrared Atmospheric Sounder Interferometer (IASI) and those simulated using the σ-IASI-as radiative transfer model, which takes into account aerosol extinction effect through a set of fast parameterizations. Simulations have been carried out using different sets of input complex refractive indices, which take into account the parent soils of the aerosols. Their accuracy also relies on the quality of the characterization of desert dust microphysical properties, achieved through direct measurements in the ChArMEx experiment. On the one hand, the fact that the model can ingest such a variable input proves its feasibility. On the other hand, this work goes through a direct validation of different refractive index sets for desert dust in the thermal infrared, and pursues an assessment of the sensitivity of IASI data with respect to the dimensional distribution of desert dust particles. Results show a good consistency between calculations and observations, especially in the spectral interval 800–1000 cm−1; further, the comparison between calculations and observations suggests that further efforts are needed to better characterize desert dust optical properties in the shortwave (above 2000 cm−1). Whatever the case, we show that it is necessary to properly tune the refractive indices according to the geographical origin of the observed aerosol.


2011 ◽  
Vol 49 (6) ◽  
pp. 2819-2827 ◽  
Author(s):  
Qian Feng ◽  
N. Christina Hsu ◽  
Ping Yang ◽  
Si-Chee Tsay

The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles in computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.


2005 ◽  
Vol 5 (2) ◽  
pp. 1421-1467 ◽  
Author(s):  
A. Kylling ◽  
A. R. Webb ◽  
R. Kift ◽  
G. P. Gobbi ◽  
L. Ammannato ◽  
...  

Abstract. In September 2002 an extensive campaign to study the influence of clouds on the spectral actinic flux in the lower troposphere was carried out in East Anglia, England. Measurements of the actinic flux, the irradiance and aerosol and cloud properties were made from four ground stations and by aircraft. For cloudless conditions the measurements of the actinic flux were reproduced by a 1-D radiative transfer model within the measurement and model uncertainties of about ±5%. For overcast days 1-D radiative transfer calculations reproduce the overall behaviour of the actinic flux measured by the aircraft. Furthermore the actinic flux is increased by between 60–100% above the cloud when compared to a cloudless sky with the largest increase for the optically thickest cloud. Similarily the below cloud actinic flux is decreased by about 55–65%. Just below the cloud top the downwelling actinic flux has a maximum which is seen in both the measurements and the model results. For broken clouds the traditional cloud fraction approximation is not able to simultaneously reproduce the measured above cloud enhancement and below cloud reduction in the actinic flux.


2020 ◽  
Vol 4 (1) ◽  
pp. 4
Author(s):  
Marios-Bruno Korras-Carraca ◽  
Antonis Gkikas ◽  
Arlindo M. Da Silva ◽  
Christos Matsoukas ◽  
Nikolaos Hatzianastassiou ◽  
...  

The overarching goal of the current study is to quantify the aerosol-induced clear-sky direct radiative effects (DREs) within the Earth-atmosphere system at the global scale and for the 40-year period 1980–2019. To this aim, the MERRA-2 aerosol radiative properties, along with meteorological fields and surface albedo, are used as inputs to the Foundation for Research and Technology-Hellas (FORTH) radiative transfer model (RTM). Our preliminary results, representative for the year 2015, reveal strong surface radiative cooling (down to −45 Wm−2) over areas where high aerosol loadings and absorbing particles (i.e., dust and biomass burning) dominate. This reduction of the incoming solar radiation in the aforementioned regions is largely attributed to its absorption by the overlying suspended particles resulting in atmospheric warming reaching up to 40 Wm−2. At the top of the atmosphere (TOA), negative DREs (planetary cooling) are computed worldwide (down to −20 Wm−2) with few exceptions over bright surfaces (warming up to 5 Wm−2). Finally, the strong variations between the obtained DREs of different aerosol species (dust, sea salt, sulfate, and organic/black carbon) as well as between hemispheres and surface types (i.e., land vs. ocean) are also discussed.


Sign in / Sign up

Export Citation Format

Share Document