natural aerosol
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Julia Schmale ◽  
Sangeeta Sharma ◽  
Stefano Decesari ◽  
Jakob Pernov ◽  
Andreas Massling ◽  
...  

Abstract. Even though the Arctic is remote, aerosol properties observed there are strongly influenced by anthropogenic emissions from outside the Arctic. This is particularly true for the so-called Arctic haze season (January through April). In summer (June through September), when atmospheric transport patterns change, and precipitation is more frequent, local Arctic, i.e. natural sources of aerosols and precursors, play an important role. Over the last decades, significant reductions in anthropogenic emissions have taken place. At the same time a large body of literature shows evidence that the Arctic is undergoing fundamental environmental changes due to climate forcing, leading to enhanced emissions by natural processes that may impact aerosol properties. In this study, we analyze nine aerosol chemical species and four particle optical properties from ten Arctic observatories (Alert, Gruvebadet, Kevo, Pallas, Summit, Thule, Tiksi, Barrow, Villum, Zeppelin) to understand changes in anthropogenic and natural aerosol contributions. Variables include equivalent black carbon, particulate sulfate, nitrate, ammonium, methanesulfonic acid, sodium, iron, calcium and potassium, as well as scattering and absorption coefficients, single scattering albedo and scattering Ångström exponent. First, annual cycles are investigated, which despite anthropogenic emission reductions still show the Arctic haze phenomenon. Second, long-term trends are studied using the Mann-Kendall Theil-Sen slope method. We find in total 28 significant trends over full station records, i.e. spanning more than a decade, compared to 17 significant decadal trends. The majority of significantly declining trends is from anthropogenic tracers and occurred during the haze period, driven by emission changes between 1990 and 2000. For the summer period, no uniform picture of trends has emerged. Twenty-one percent of trends, i.e. eleven out of 57, are significant, and of those five are positive and six are negative. Negative trends include not only anthropogenic tracers such as equivalent black carbon at Kevo, but also natural indicators such as methanesulfonic acid and non-sea salt calcium at Alert. Positive trends are observed for sulfate at Zeppelin and Gruvebadet. No clear evidence of a significant change in the natural aerosol contribution can be observed yet. However, testing the sensitivity of the Mann-Kendall Theil-Sen method, we find that monotonic changes of around 5 % per year in an aerosol property are needed to detect a significant trend within one decade. This highlights that long-term efforts well beyond a decade are needed to capture smaller changes. It is particularly important to understand the ongoing natural changes in the Arctic, where interannual variability can be high, such as with forest fire emissions and their influence on the aerosol population. To investigate the climate-change induced influence on the aerosol population and the resulting climate feedback, long-term observations of tracers more specific to natural sources are needed, as well as of particle microphysical properties such as size distributions, which can be used to identify changes in particle populations which are not well captured by mass-oriented methods such as bulk chemical composition.


2021 ◽  
Vol 21 (14) ◽  
pp. 11317-11335
Author(s):  
Congbo Song ◽  
Manuel Dall'Osto ◽  
Angelo Lupi ◽  
Mauro Mazzola ◽  
Rita Traversi ◽  
...  

Abstract. Understanding aerosol–cloud–climate interactions in the Arctic is key to predicting the climate in this rapidly changing region. Whilst many studies have focused on submicrometer aerosol (diameter less than 1 µm), relatively little is known about the supermicrometer aerosol (diameter above 1 µm). Here, we present a cluster analysis of multiyear (2015–2019) aerodynamic volume size distributions, with diameter ranging from 0.5 to 20 µm, measured continuously at the Gruvebadet Observatory in the Svalbard archipelago. Together with aerosol chemical composition data from several online and offline measurements, we apportioned the occurrence of the coarse-mode aerosols during the study period (mainly from March to October) to anthropogenic (two sources, 27 %) and natural (three sources, 73 %) origins. Specifically, two clusters are related to Arctic haze with high levels of black carbon, sulfate and accumulation mode (0.1–1 µm) aerosol. The first cluster (9 %) is attributed to ammonium sulfate-rich Arctic haze particles, whereas the second one (18 %) is attributed to larger-mode aerosol mixed with sea salt. The three natural aerosol clusters were open-ocean sea spray aerosol (34 %), mineral dust (7 %) and an unidentified source of sea spray-related aerosol (32 %). The results suggest that sea-spray-related aerosol in polar regions may be more complex than previously thought due to short- and long-distance origins and mixtures with Arctic haze, biogenic and likely blowing snow aerosols. Studying supermicrometer natural aerosol in the Arctic is imperative for understanding the impacts of changing natural processes on Arctic aerosol.


Author(s):  
Umurova Nigora Mavlonovna ◽  
◽  
Ismatova Mehriniso Nasritdinovna ◽  

The review is dedicated to the analysis of ecological aspects of pollen allergy (pollinosis). The characteristic of pollen as a natural aerosol component is given. The information related to aeropalinological monitoring and its importance in public health service is presented. The peculiarity of this pathology is its regional variety associated with differences in plant species compositions and pollen periods. The problem of immune response formation to pollen has been studied most profoundly. At that it is known that sensibilization is not always associated with clinical signs. Russian and foreign data about correlation studies between the pollen quantity and the disorder symptom load are discussed. It is shown that there is no decisive answer to the question about threshold pollen counts of certain plants and its impact on different stages of respiratory diseases. The detailed analysis of the correlation between the symptoms and quantitative variables of pollen allergens may provide useful information for risks evaluation of disease exacerbation as well as for tactics elaboration of hypoallergic measures. This is a cross-disciplinary issue involving allergology, aerobiology and ecology. The perspective of further development of this subject in order to obtain more accurate vision of the reasons, mechanisms and patterns of all parts of multifactorial process of pollinosis formation is discussed


2021 ◽  
Author(s):  
Congbo Song ◽  
Manuel Dall’Osto ◽  
Angelo Lupi ◽  
Mauro Mazzola ◽  
Rita Traversi ◽  
...  

Abstract. Understanding aerosol-cloud-climate interactions in the Arctic is key to predict the climate in this rapidly changing region. Whilst many studies have focused on submicron aerosol (diameter less than 1 μm), relatively little is known about the climate relevance of supermicron aerosol (diameter above 1 μm). Here, we present a cluster analysis of multiyear (2015–2019) aerodynamic volume size distributions with diameter ranging from 0.5 to 20 μm measured continuously at the Gruvebadet Observatory in the Svalbard archipelago. Together with aerosol chemical composition data from several online and offline measurements, we apportioned the occurrence of the coarse-mode aerosols to anthropogenic (two sources, 27 %) and natural (three sources, 73 %) origins. Specifically, two clusters are related to Arctic haze with high levels of black carbon, sulfate and accumulation mode (0.1–1 μm) aerosol. The first cluster (9 %) is attributed to ammonium sulfate-rich Arctic haze particles, whereas the second one (18 %) to larger-mode aerosol mixed with sea salt. The three natural aerosol clusters were: open ocean sea spray aerosol (34 %), mineral dust (7 %), and an unidentified source of sea spray-related aerosol (32 %). The results suggest that sea spray-related aerosol in polar regions may be more complex than previously thought due to short/long-distance origins and mixtures with Arctic haze, biogenic and likely snow-blowing aerosols. Studying supermicron natural aerosol in the Arctic is imperative for understanding the impacts of changing natural processes on Arctic aerosol.


2018 ◽  
Author(s):  
Stephanie Fiedler ◽  
Stefan Kinne ◽  
W. T. Katty Huang ◽  
Petri Räisänen ◽  
Declan O'Donnell ◽  
...  

Abstract. The radiative forcing of anthropogenic aerosol remains a key uncertainty in the understanding of climate change. This study quantifies the model spread in aerosol forcing associated with (i) variability internal to the atmosphere and (ii) differences in the model representation of weather. We do so by performing ensembles of atmosphere-only simulations with four state-of-the-art Earth system models, three of which will be used in the sixth coupled model inter-comparison project (CMIP6, Eyring et al., 2016). In those models we reduce the complexity of the anthropogenic aerosol by prescribing the same annually-repeating patterns of the anthropogenic aerosol optical properties and associated effects on the cloud reflectivity. We quantify a comparably small model spread in the long-term averaged ERF compared to the overall possible range in annual ERF estimates associated with model-internal variability. This implies that identifying the true model spread in ERF associated with differences in the representation of meteorological processes and natural aerosol requires averaging over a sufficiently large number of annual estimates. We characterize the model diversity in clouds and use satellite products as benchmarks. Despite major inter-model differences in natural aerosol and clouds, all models show only a small change in the global-mean ERF due to the substantial change in the global anthropogenic aerosol distribution between the mid-1970s and mid-2000s, the ensemble mean ERF being −0.47 Wm−2 for the mid-1970s and −0.51 Wm−2 for the mid-2000s. This result suggests that inter-comparing ERF changes between two periods rather than absolute magnitudes relative to pre-industrial might provide a more stringent test for a model's ability for representing climate evolutions.


2018 ◽  
Vol 18 (12) ◽  
pp. 8601-8620 ◽  
Author(s):  
Aristeidis K. Georgoulias ◽  
Athanasios Tsikerdekis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Angela Benedetti ◽  
...  

Abstract. The MACC reanalysis dust product is evaluated over Europe, northern Africa and the Middle East using the EARLINET-optimized CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007–2012). MACC dust optical depth at 550 nm (DOD550) data are compared against LIVAS DOD532 observations. As only natural aerosol (dust and sea salt) profiles are available in MACC, here we focus on layers above 1 km a.s.l. to diminish the influence of sea salt particles that typically reside at low heights. So, MACC natural aerosol extinction coefficient profiles at 550 nm are compared against dust extinction coefficient profiles at 532 nm from LIVAS, assuming that the MACC natural aerosol profile data can be similar to the dust profile data, especially over pure continental regions. It is shown that the reanalysis data are capable of capturing the major dust hot spots in the area as the MACC DOD550 patterns are close to the LIVAS DOD532 patterns throughout the year. MACC overestimates DOD for regions with low dust loadings and underestimates DOD for regions with high dust loadings where DOD exceeds ∼ 0.3. The mean bias between the MACC and LIVAS DOD is 0.025 (∼ 25 %) over the whole domain. Both MACC and LIVAS capture the summer and spring high dust loadings, especially over northern Africa and the Middle East, and exhibit similar monthly structures despite the biases. In this study, dust extinction coefficient patterns are reported at four layers (layer 1: 1200–3000 m a.s.l., layer 2: 3000–4800 m a.s.l., layer 3: 4800–6600 m a.s.l. and layer 4: 6600–8400 m a.s.l.). The MACC and LIVAS extinction coefficient patterns are similar over areas characterized by high dust loadings for the first three layers. Within layer 4, MACC overestimates extinction coefficients consistently throughout the year over the whole domain. MACC overestimates extinction coefficients compared to LIVAS over regions away from the major dust sources while over regions close to the dust sources (the Sahara and Middle East) it underestimates strongly only for heights below ∼ 3–5 km a.s.l. depending on the period of the year. In general, it is shown that dust loadings appear over remote regions and at heights up to 9 km a.s.l. in MACC contrary to LIVAS. This could be due to the model performance and parameterizations of emissions and other processes, due to the assimilation of satellite aerosol measurements over dark surfaces only or due to a possible enhancement of aerosols by the MACC assimilation system.


2018 ◽  
Author(s):  
Aristeidis K. Georgoulias ◽  
Athanasios Tsikerdekis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Angela Benedetti ◽  
...  

Abstract. The MACC reanalysis dust product is evaluated over Europe, Northern Africa and Middle East using the EARLINET-optimized CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007–2012). MACC dust optical depth at 550 nm (DOD550) data are compared against LIVAS DOD532 observations. As only natural aerosol (dust and sea salt) profiles are available in MACC, here we focus on layers above 1 km a.s.l. to diminish the influence of sea salt particles that typically reside at low heights. So, MACC natural aerosol extinction coefficient profiles at 550 nm are compared against dust extinction coefficient profiles at 532 nm from LIVAS assuming that the MACC natural aerosol profile data can be similar to the dust profile data, especially over pure continental regions. It is shown that the reanalysis data are capable of capturing the major dust hot spots in the area as the MACC DOD550 patterns are close to the LIVAS DOD532 patterns throughout the year. MACC overestimates DOD for regions with low dust loadings and underestimates DOD for regions with high dust loadings where DOD exceeds ~ 0.3. The mean bias between the MACC and LIVAS DOD is 0.025 (~ 25 %) over the whole domain. Both MACC and LIVAS capture the summer and spring high dust loadings, especially over Northern Africa and Middle East, and exhibit similar monthly structures despite the biases. In this study, dust extinction coefficient patterns are reported at four layers (layer 1: 1200–3000 m a.s.l., layer 2: 3000–4800 m a.s.l., layer 3: 4800–6600 m a.s.l. and layer 4: 6600–8400 m a.s.l.). The MACC and LIVAS extinction coefficient patterns are similar over areas characterized by high dust loadings for the first 3 layers. Within layer 4, MACC overestimates extinction coefficients consistently throughout the year over the whole domain. MACC overestimates extinction coefficients compared to LIVAS over regions away from the major dust sources while over regions close to the dust sources (Sahara and Middle East) underestimates strongly only for heights below ~ 3–5 km a.s.l. depending on the period of the year. In general, it is shown that dust loadings appear over remote regions and at heights up to 9 km a.s.l. in MACC contrary to LIVAS. This could be due to the model performance and parameterizations of emissions and other processes, due to the assimilation of satellite aerosol measurements over dark surfaces only or due to a possible enhancement of aerosols by the MACC assimilation system.


Author(s):  
Maryana M. Shogenova ◽  
◽  
Lusya A. Baragunova ◽  
Amir A. Boriev ◽  
Aslan Kh. Lampezhev ◽  
...  
Keyword(s):  

2015 ◽  
Vol 15 (20) ◽  
pp. 29125-29170 ◽  
Author(s):  
R. S. Humphries ◽  
A. R. Klekociuk ◽  
R. Schofield ◽  
M. Keywood ◽  
J. Ward ◽  
...  

Abstract. The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of cloud and aerosol over the Southern Ocean.


2014 ◽  
Vol 14 (16) ◽  
pp. 8295-8308 ◽  
Author(s):  
L. Liao ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
M. Kulmala ◽  
M. Dal Maso

Abstract. We investigated the natural aerosol evolution of biogenic monoterpene emissions over the northern boreal forest area as a function of temperature using long-term field measurements of aerosol size distributions and back trajectories at two SMEAR (Station for Measuring Ecosystem–Atmosphere Relations) stations, SMEAR I and SMEAR II, in Finland. Similar to earlier studies, we found that new particles were formed via nucleation when originally clean air from the ocean entered the land, after which these particles continuously grew to larger sizes during the air mass transport. Both the travelling hour over land and temperature influenced the evolution of the particle number size distribution and aerosol mass yield from biogenic emissions. Average concentrations of nucleation mode particles were higher at lower temperatures, whereas the opposite was true for accumulation mode particles. Thus, more cloud condensation nuclei (CCN) may be formed at higher temperatures. The overall apparent aerosol yield, derived from the aerosol masses against accumulated monoterpene emissions, ranges from 13 to 37% with a minor, yet complicating, temperature dependence.


Sign in / Sign up

Export Citation Format

Share Document