Design of a thermal management system for a battery pack in an electric vehicle using Dymola

Heat Transfer ◽  
2020 ◽  
Vol 49 (5) ◽  
pp. 2686-2705 ◽  
Author(s):  
Veeraj V. Shet ◽  
Babu R. Ponangi ◽  
Kiran Jacob
Author(s):  
Nengsheng Bao ◽  
Wei Li ◽  
Ma Chong ◽  
Fan Yuchen ◽  
Li Tuyan

Abstract The new energy electric vehicle, which takes clean electric energy as the main driving force, has no pollutants and exhaust emissions during its operation. And has a higher energy utilization ratio than the fuel locomotive. Therefore, electric vehicles have been widely developed in recent years. The maximum temperature and temperature consistency of battery pack in electric vehicle have great influence on the life and safety of battery. In this paper, the thermal management system of lithium battery pack was taken as the research object. The temperature distribution and uniformity of battery pack under different heat dissipation conditions were analyzed based on computational fluid dynamics (CFD). The multi-objective optimization method of battery pack thermal management system was carried out by combining sur-rogate model with fast non-dominated sorting genetic algorithm (NSGA-II). The maximum temperature of the battery pack obtained from candidate point 1 is 310.72K, which is 4.99K lower than the initial model temperature, and the temperature standard deviation is 0.76K, with a reduction rate of 51.9%. Experiment results showed that maximum difference between the optimized and experimental value of the maximum temperature is 0.8K, and the error was within 1K. Therefore, the multi-objective optimization method proposed in this paper has high accuracy.


2014 ◽  
Vol 563 ◽  
pp. 362-365
Author(s):  
Chao Jiang ◽  
Zhi Guo Tang ◽  
Jia Xin Hao ◽  
Hui Qing Li

Effective thermal management of battery pack is essential for electric vehicle to adapt to different kinds of external environment, achieve desired working efficiency and life cycle of the power batteries. In this paper, a novel thermal management system is designed for battery pack in electric vehicle. Visualized simulation analysis of the thermal management system is carried on under different working conditions by CFD, then the structure parameters will be optimized. According to the conclusion, the thermal management system has been indicated to be effective to ensure an appropriate temperature range and the normal work of the power batteries in electric vehicle.


2021 ◽  
Vol 11 (15) ◽  
pp. 7089
Author(s):  
Thomas Imre Cyrille Buidin ◽  
Florin Mariasiu

The battery thermal management system is one of the important systems of an electric vehicle with direct effects on its performance. In this regard, this paper proposes a mathematical model that increases the accuracy of data obtained by numerical analysis of the temperature inside battery packs. The activity of the design and development (as accurate as possible) of a battery pack leads to an increase in the life of the battery cells and of the energetic efficiency of the electric vehicle in the specific operating conditions of road traffic. The research methodology of the thermal phenomenon in the battery pack, presented by the authors, is based on an efficient co-simulation concept consisting of steady-state CFD simulations and transient 1D simulations using a new mathematical model for the thermal behavior of a lithium-ion (Li-ion) cylindrical battery and applied in a battery pack’s forced air cooling thermal management system. Comparing the obtained results, it was found that the use of the model provides more accurate calculations of the local thermal performance of the air cooling system, with a direct influence on optimizing its design and construction. It is also highlighted that using the proposed model for higher heat transfer coefficient values (increase in air flow), offers more accurate data compared to other models, with immediate benefits in the proper design and development of the battery’s thermal management system.


Sign in / Sign up

Export Citation Format

Share Document