Hydromagnetic flow of heat absorbing and radiating fluid over exponentially stretching sheet with partial slip and viscous and Joule dissipation

2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Gauri Shanker Seth ◽  
Rohit Sharma ◽  
Bidyasagar Kumbhakar ◽  
Ali J Chamkha

Purpose An investigation of hydromagnetic two dimensional boundary layer flow with heat transfer of a viscous, incompressible, electrically conducting, heat absorbing and optically thick heat radiating fluid over a permeable exponentially stretching sheet considering the effects of viscous and Joule dissipations in the presence of velocity and thermal slip is carried out. Design/methodology/approach Using similarity transform, governing differential equations representing mathematical model of the problem are solved with the help of fourth-order Runge-Kutta method along with shooting technique. Numerical solutions of fluid velocity and fluid temperature are depicted graphically for various values of pertinent flow parameters whereas numerical values of wall velocity gradient and wall temperature gradient are displayed graphically for various values of pertinent flow parameters. Findings Numerical results obtained in this paper are compared with earlier published results and are found to be in excellent agreement. Magnetic field and suction tend to enhance the wall velocity gradient whereas dimensionless co-ordinate, injection and velocity slip factor have reverse effect on it. Suction and heat absorption tend to enhance wall temperature gradient whereas magnetic field, velocity slip factor, injection, thermal radiation, thermal slip factor and viscous dissipation have reverse effect on it. Originality/value The investigation of this problem may have bearing in several engineering processes such as extrusion of plastic sheet, annealing and tinning of copper wire, paper production, crystal growing and glass blowing, continuous casting of metals and spinning of fibers.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Tarek M. A. El-Mistikawy

The traditionally ignored physical processes of viscous dissipation, Joule heating, streamwise heat diffusion, and work shear are assessed and their importance is established. The study is performed for the MHD flow due to a linearly stretching sheet with induced magnetic field. Cases of prescribed surface temperature, heat flux, surface feed (injection or suction), velocity slip, and thermal slip are considered. Sample numerical solutions are obtained for the chosen combinations of the flow parameters.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Hafiz Abdul Wahab ◽  
Syed Zahir Hussain Shah ◽  
Assad Ayub ◽  
Zulqurnain Sabir ◽  
Muhammad Bilal ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Solomon Bati Kejela ◽  
Mitiku Daba ◽  
Abebe Girum

Analytical investigation of thermal radiation, Prandtl number, Eckert number, permeability parameter, magnetic field, velocity, and thermal slip effects on magnetohydrodynamic Hiemenz flow over a permeable plate with forced convection has been presented. Similarity variable conversion method has been applied to transmute the fundamental governing equations of the fluid dynamics in flow into a pair of nonlinear third-order ordinary differential equations and is analytically solved by the optimal homotopy asymptotic method (OHAM). The influences of several relevant physical parameters in the model on velocity and temperature of the fluid have been studied and analysed profoundly by use of graphs and tables. It is detected that, with mounting value of suction/blowing parameter and magnetic field parameter, the skin friction coefficient enhances. Likewise, it is seen that the Nusselt number increases with enhancing value of magnetic parameter. It is also witnessed that the velocity increases as the Eckert number, blowing/suction parameter, and permeability parameter increase, but it decays against magnetic field and velocity slip parameter. Moreover, the result reveals that the fluid temperature upsurges along with snowballing the radiant heat, magnetic field parameter, and the Eckert number. However, it descends against thermal slip parameter, Prandtl number, wall temperature exponent, and velocity slip parameter. A comparison with previous studies has been made, and the result shows an excellent agreement.


Author(s):  
Nur Syamila Yusof ◽  
Siti Khuzaimah Soid ◽  
Mohd Rijal Illias ◽  
Ahmad Sukri Abd Aziz ◽  
Nor Ain Azeany Mohd Nasir

This study is aimed to analyze the steady of stagnation point flow and radiative heat transfer of a non-Newtonian fluid which is Casson fluid passing over an exponentially permeable slippery Riga plate in presence of thermal radiation, magnetic field, velocity slip, thermal slip, and viscous dissipation effects. The governing partial differential equations are transformed into ordinary differential equations by using similarity transformation then solved numerically by boundary value problem solver (BVP4C) in MATLAB software package. The numerical results are evaluated with previous researches to reach an agreement with the parameters of the current study. This study is discussing the behavior of the velocity and temperature profiles as well as skin friction coefficient and local Nusselt number for various physical parameters such as magnetic field, radiation, suction, thermal slip, velocity slip, Prandtl number, Eckert number and modified Hartmann number. Numerical results are shown graphically for each parameter with different values. It is found that the momentum boundary layer thickness increases with increasing the values of Casson parameter. The temperature decreases when the velocity slip parameter and thermal slip parameter are increased.


2018 ◽  
Vol 7 (1) ◽  
pp. 29-43 ◽  
Author(s):  
C.H. Amanulla ◽  
N. Nagendra ◽  
M. Suryanarayana Reddy

Abstract An analysis of this paper is examined, two-dimensional, laminar with heat and mass transfer of natural convective nanofluid flow past a semi-infinite vertical plate surface with velocity and thermal slip effects are studied theoretically. The coupled governing partial differential equations are transformed to ordinary differential equations by using non-similarity transformations. The obtained ordinary differential equations are solved numerically by a well-known method named as Keller Box Method (KBM). The influences of the emerging parameters i.e. Casson fluid parameter (β), Brownian motion parameter (Nb), thermophoresis parameter (Nt), Buoyancy ratio parameter (N), Lewis number (Le), Prandtl number (Pr), Velocity slip factor (Sf) and Thermal slip factor (ST) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length. The major sources of nanoparticle migration in Nanofluids are Thermophoresis and Brownian motion. A suitable agreement with existing published literature is made and an excellent agreement is observed for the limiting case and also validation of solutions with a Nakamura tridiagonal method has been included. It is observed that nanoparticle concentrations on surface decreases with an increase in slip parameter. The study is relevant to enrobing processes for electric-conductive nano-materials, of potential use in aerospace and other industries.


2018 ◽  
Vol 16 ◽  
pp. 96-108 ◽  
Author(s):  
H.B. Santosh ◽  
Mahesha ◽  
Chakravarthula S.K. Raju ◽  
Oluwole Daniel Makinde

In this study, we addressed the impact of magnetic field on fluid flow and heat transfer of an in compressible Carreau fluid over exponentially stretching sheet in addition with fluid and dust particle suspension. Thermal radiation and non-uniform heat source/sink were included to develop heat transport phenomena. Dusty fluids have various applications such as processing of material, nuclear heat treatment, cooling process, treatment of waste water etc. The relevant governing equations are converted into ordinary differential equation using similarity transformation the transformed ordinary differential equations are then solved numerically by shooting technique along with Runge-Kutta method The effect of certain parameters on the dimensionless velocity and temperature are presented graphically. The physical quantities of the flow such as the friction factor and Local Nusselt number were calculated. It was found from the study that the velocity slip parameter increases the temperature profiles.


Author(s):  
Siti Nur Haseela Izani ◽  
Anati Ali

An analysis has been carried out to study a problem of the chemical reaction effects on magnetohydrodynamics (MHD) mixed convective boundary layer flow with a fluid-particle suspension due to an exponentially stretching sheet. The effects of magnetic field and mass transfer are taken into account for the first time in the dusty fluid over the exponentially stretching sheet. The governing partial nonlinear differential equations corresponding to the momentum, energy and concentration are converted into a system of ordinary differential equations by using similarity transformations. The relevant dimensionless equations are then solved numerically using Runge-Kutta-Fehlberg fourth fifth order method (RKF45) with the help of Maple symbolic software. The influence of physical parameters on the velocity, temperature and concentration distributions for both phases were discussed numerically and presented in details through plotted graphs and tables. Also, the numerical values of skin friction coefficient, Nusselt and Sherwood number of the governing parameters are analyzed and discussed in details. The outcomes show that the reaction parameter affects the fluid flow whereas the magnetic field retards the fluid flow. A comparative study of the present results with the previous study provides an excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document