Significance of exponential space‐based heat source and inclined magnetic field on heat transfer of hybrid nanoliquid with homogeneous–heterogeneous chemical reactions

Heat Transfer ◽  
2021 ◽  
Author(s):  
Wael Al‐Kouz ◽  
Kharabela Swain ◽  
Basavarajappa Mahanthesh ◽  
Wasim Jamshed
2020 ◽  
Vol 9 (3) ◽  
pp. 143-151
Author(s):  
S. Jena ◽  
S. R. Mishra ◽  
P. K. Pattnaik

In the current scenario a new mathematical model is designed and examined for the unsteady course of nanofluid through permeable vertical surface due to the interaction of inclined magnetic field. Radiative heat transfer properties is included assuming the Cogley radiation, dissipative heat energy due to the conjunction o magnetic field i.e., Joule dissipation and the space and time-dependent heat source/sink amplifies the study as well. Depending upon todays need in various industries the implementation of nanofluid is vital. Therefore, present study involves the behavior of both metal and oxide nanoparticles in the base fluid kerosene. Involvement of transformation rules the problem is converted into nonlinear set of ODEs and further these are solved employing approximate analytical technique such as Variational Iteration Method (VIM). The characteristics of various flow parameters are analyzed via graphs and the numerical simulation along with the validation of the result is obtained through tables. The comparative study brings out the convergence criterion of the methodology adopted herein. However, the favorable results are; the fluid temperature augments with increasing nanoparticle volume fraction and suction enriches both the fluid velocity and temperature whereas injection retards it significantly.


2020 ◽  
Vol 25 (2) ◽  
pp. 88-102
Author(s):  
T. Mehta ◽  
R. Mehta ◽  
A. Mehta

AbstractThe aim of the paper is to investigate an oscillatory fluid flow and heat transfer through a porous medium between parallel plates in the presence of an inclined magnetic field, radiative heat flux and heat source. It is assumed that electrical conductivity of the fluid is small and the electromagnetic force produced is very small. The governing coupled equations of motion and energy are solved analytically. Numerical results for the velocity and temperature profiles, local skin friction coefficient and local Nusselt number for various values of physical parameters are discussed numerically and presented graphically.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


Sign in / Sign up

Export Citation Format

Share Document