scholarly journals Jet Impingement Heat Transfer of Confined Single and Double Jets with Non-Newtonian Power Law Nanofluid under the Inclined Magnetic Field Effects for a Partly Curved Heated Wall

2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.

2017 ◽  
Vol 9 (5) ◽  
pp. 1094-1110
Author(s):  
Lei Wang ◽  
Zhenhua Chai ◽  
Baochang Shi

AbstractIn this paper, the magnetic field effects on natural convection of power-law nanofluids in rectangular enclosures are investigated numerically with the lattice Boltzmann method. The fluid in the cavity is a water-based nanofluid containing Cu nanoparticles and the investigations are carried out for different governing parameters including Hartmann number (0.0≤Ha≤20.0), Rayleigh number (104≤Ra≤106), power-law index (0.5≤n≤1.0), nanopartical volume fraction (0.0≤ϕ≤0.1) and aspect ratio (0.125≤AR≤8.0). The results reveal that the flow oscillations can be suppressed effectively by imposing an external magnetic field and the augmentation of Hartmann number and power-law index generally decreases the heat transfer rate. Additionally, it is observed that the average Nusselt number is increased with the increase of Rayleigh number and nanoparticle volume fraction. Moreover, the present results also indicate that there is a critical value for aspect ratio at which the impact on heat transfer is the most pronounced.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Mahbuba Tasmin ◽  
Preetom Nag ◽  
Zarin T. Hoque ◽  
Md. Mamun Molla

AbstractA numerical study on heat transfer and entropy generation in natural convection of non-Newtonian nanofluid flow has been explored within a differentially heated two-dimensional wavy porous cavity. In the present study, copper (Cu)–water nanofluid is considered for the investigation where the specific behavior of Cu nanoparticles in water is considered to behave as non-Newtonian based on previously established experimental results. The power-law model and the Brinkman-extended Darcy model has been used to characterize the non-Newtonian porous medium. The governing equations of the flow are solved using the finite volume method with the collocated grid arrangement. Numerical results are presented through streamlines, isotherms, local Nusselt number and entropy generation rate to study the effects of a range of Darcy number (Da), volume fractions (ϕ) of nanofluids, Rayleigh numbers (Ra), and the power-law index (n). Results show that the rate of heat transfer from the wavy wall to the medium becomes enhanced by decreasing the power-law index but increasing the volume fraction of nanoparticles. Increase of porosity level and buoyancy forces of the medium augments flow strength and results in a thinner boundary layer within the cavity. At negligible porosity level of the enclosure, effect of volume fraction of nanoparticles over thermal conductivity of the nanofluids is imperceptible. Interestingly, when the Darcy–Rayleigh number $$Ra^*\gg 10$$ R a ∗ ≫ 10 , the power-law effect becomes more significant than the volume fraction effect in the augmentation of the convective heat transfer process. The local entropy generation is highly dominated by heat transfer irreversibility within the porous enclosure for all conditions of the flow medium. The particular wavy shape of the cavity strongly influences the heat transfer flow pattern and local entropy generation. Interestingly, contour graphs of local entropy generation and local Bejan number show a rotationally symmetric pattern of order two about the center of the wavy cavity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 449 ◽  
Author(s):  
Ali J. Chamkha ◽  
Fatih Selimefendigil ◽  
Hakan F. Oztop

Effects of a rotating cone in 3D mixed convection of CNT-water nanofluid in a double lid-driven porous trapezoidal cavity is numerically studied considering magnetic field effects. The numerical simulations are performed by using the finite element method. Impacts of Richardson number (between 0.05 and 50), angular rotational velocity of the cone (between −300 and 300), Hartmann number (between 0 and 50), Darcy number (between 10 − 4 and 5 × 10 − 2 ), aspect ratio of the cone (between 0.25 and 2.5), horizontal location of the cone (between 0.35 H and 0.65 H) and solid particle volume fraction (between 0 and 0.004) on the convective heat transfer performance was studied. It was observed that the average Nusselt number rises with higher Richardson numbers for stationary cone while the effect is reverse for when the cone is rotating in clockwise direction at the highest supped. Higher discrepancies between the average Nusselt number is obtained for 2D cylinder and 3D cylinder configuration which is 28.5% at the highest rotational speed. Even though there are very slight variations between the average Nu values for 3D cylinder and 3D cone case, there are significant variations in the local variation of the average Nusselt number. Higher enhancements in the average Nusselt number are achieved with CNT particles even though the magnetic field reduced the convection and the value is 84.3% at the highest strength of magnetic field. Increasing the permeability resulted in higher local and average heat transfer rates for the 3D porous cavity. In this study, the aspect ratio of the cone was found to be an excellent tool for heat transfer enhancement while 95% enhancements in the average Nusselt number were obtained. The horizontal location of the cone was found to have slight effects on the Nusselt number variations.


2017 ◽  
Vol 28 (11) ◽  
pp. 1750138 ◽  
Author(s):  
Xuguang Yang ◽  
Lei Wang

In this paper, the magnetic field effects on natural convection of power-law non-Newtonian fluids in rectangular enclosures are numerically studied by the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). To maintain the locality of the LBM, a local computing scheme for shear rate is used. Thus, all simulations can be easily performed on the Graphics Processing Unit (GPU) using NVIDIA’s CUDA, and high computational efficiency can be achieved. The numerical simulations presented here span a wide range of thermal Rayleigh number ([Formula: see text]), Hartmann number ([Formula: see text]), power-law index ([Formula: see text]) and aspect ratio ([Formula: see text]) to identify the different flow patterns and temperature distributions. The results show that the heat transfer rate is increased with the increase of thermal Rayleigh number, while it is decreased with the increase of Hartmann number, and the average Nusselt number is found to decrease with an increase in the power-law index. Moreover, the effects of aspect ratio have also investigated in detail.


2021 ◽  
Author(s):  
Yunxian Pei ◽  
Xuelan Zhang ◽  
Liancun Zheng ◽  
Xinzi Wang

Abstract In this paper, we study coupled flow and heat transfer of power-law nanofluids on a non-isothermal rough rotating disk subject to a magnetic field. The problem is formulated in terms of specified curvilinear orthogonal coordinate system. An improved BVP4C algorithm is proposed and numerical solutions are obtained. The influence of volume fraction, types and shapes of nanoparticles, magnetic field and power-law index on the flow and heat transfer behavior are discussed.<br/>Results show that the power-law exponents (PLE), nanoparticle volume fraction (NVF) and magnetic field inclination angle (MFIA) are almost no effects on velocities in wave surface direction, but have small or significant effects on azimuth direction. NVF have remarkable influence on local Nusselt number (LNN) and friction coefficients (FC) in radial and azimuth directions (AD). LNN increases with NVF while FC in AD decrease. The types of nanoparticles, magnetic field strength and inclination have small effects on LNN, but they have remarkable effects on the friction coefficients with positively correlated while the inclination is negatively correlated with heat transfer rate. The size of the nanoparticle shape factor is positively correlated with LNN.


2016 ◽  
Vol 20 (6) ◽  
pp. 1801-1811 ◽  
Author(s):  
Kishan Naikoti ◽  
Kavitha Pagdipelli

Non-Newtonian boundary layer flow and heat transfer characteristics over a stretching surface with thermal radiation and slip condition at the surface is analyzed. The flow is subject to a uniform transverse magnetic field. The suitable local similarity transformations are used to transform the non-linear partial differential equations into system of ordinary differential equations. The non-linear ordinary differential equations are linearized by using Quasi-linearization technique. The implicit finite difference scheme has been adopted to solve the obtained coupled ordinary differential equations. The important finding in this communication is the combined effects of Magnetic field parameter M, power law index n, slip parameter l, radiation parameter R, surface temperature parameter g , heat source/sink parameter S, local Eckert number Ec, temperature difference parameter r, generalized local Prandtl number Pr on velocity and temperature profiles and also the skin-friction coefficient -f''(0)and heat transfer coefficient -?'(0) results are discussed. The results pertaining to the present study indicate that as the increase of magnetic field parameter, slip parameter decreases the velocity profiles, where as the temperature profiles increases for both Newtonian and non-Newtonian fluids. The power law index n and heat source/sink parameter decreases the dimensionless velocity and temperature profiles. The effect of radiation parameter, Eckert number leads to increase the dimensionless temperature. It is found that increasing the slip parameter has the effect of decreasing the skin-friction coefficient-f''(0)and heat transfer coefficient-?'(0).With the increase of power law index n is to reduce the skin-friction coefficient and increase the heat transfer coefficient.


2012 ◽  
Vol 16 (2) ◽  
pp. 489-501 ◽  
Author(s):  
Ehsan Sourtiji ◽  
Seyed Hosseinizadeh

A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame?ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray?leigh numbers. The influence of the magnetic field has been also studied and de?duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.


Sign in / Sign up

Export Citation Format

Share Document