Maxwell nanofluid heat and mass transfer analysis over a stretching sheet

Heat Transfer ◽  
2022 ◽  
Author(s):  
M. Santhi ◽  
K. V. Suryanarayana Rao ◽  
P. Sreedevi ◽  
P. Sudarsana Reddy
2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Noraihan Afiqah Rawi ◽  
Abdul Rahman Mohd Kasim ◽  
Mukheta Isa ◽  
Sharidan Shafie

This paper studies unsteady mixed convection boundary layer flow of heat and mass transfer past an inclined stretching sheet associated with the effect of periodical gravity modulation or g-jitter. The temperature and concentration are assumed to vary linearly with x, where x is the distance along the plate. The governing partial differential equations are transformed to a set of coupled ordinary differential equations using non-similarity transformation and solved numerically by Keller-box method. Numerical results for velocity, temperature and concentration profiles as well as skin friction, Nusselt number and Sherwood number are presented and analyzed for different values of inclination angle parameter.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Soraya Torkaman ◽  
Ghasem Barid Loghmani ◽  
Mohammad Heydari ◽  
Abdul-Majid Wazwaz

Purpose The purpose of this paper is to investigate a three-dimensional boundary layer flow with considering heat and mass transfer on a nonlinearly stretching sheet by using a novel operational-matrix-based method. Design/methodology/approach The partial differential equations that governing the problem are converted into the system of nonlinear ordinary differential equations (ODEs) with considering suitable similarity transformations. A direct numerical method based on the operational matrices of integration and product for the linear barycentric rational basic functions is used to solve the nonlinear system of ODEs. Findings Graphical and tabular results are provided to illustrate the effect of various parameters involved in the problem on the velocity profiles, temperature distribution, nanoparticle volume fraction, Nusselt and Sherwood number and skin friction coefficient. Comparison between the obtained results, numerical results based on the Maple's dsolve (type = numeric) command and previous existing results affirms the efficiency and accuracy of the proposed method. Originality/value The motivation of the present study is to provide an effective computational method based on the operational matrices of the barycentric cardinal functions for solving the problem of three-dimensional nanofluid flow with heat and mass transfer. The convergence analysis of the presented scheme is discussed. The benefit of the proposed method (PM) is that, without using any collocation points, the governing equations are converted to the system of algebraic equations.


Sign in / Sign up

Export Citation Format

Share Document