Water condition control of in situ soil water repellency: an observational study from a hillslope in a Japanese humid-temperate forest

2012 ◽  
Vol 26 (20) ◽  
pp. 3070-3078 ◽  
Author(s):  
Masako Kajiura ◽  
Yoshie Etori ◽  
Takeshi Tange
Author(s):  
Masako Kajiura

Soil water repellency (SWR) increases surface runoff and preferential flows. Thus, quantitative evaluation of SWR distribution is necessary to understand water movements. Because the variability of SWR distribution makes it difficult to measure directly, we developed a method for estimating an SWR distribution index, defined as the areal fraction of surface soil showing SWR (SWRarea). The theoretical basis of the method is as follows: (1) SWRarea is equivalent to the probability that a position on the soil surface is drier than the critical water content (CWC); SWR is present (droplets absorbed in >10 s) when the soil surface is drier than the CWC and absent when it is wetter. (2) CWC and soil moisture content (θ) are normally distributed independent variables. (3) Thus, based on probability theory, the cumulative normal distribution of θ – CWC (f(x)) can be obtained from the distributions of CWC and θ, and f(0), the cumulative probability that θ – CWC < 0, gives the SWRarea. To investigate whether the method gives reasonable results, we repeatedly measured θ at 0–5 cm depth and determined the water repellency of the soil surface at multiple points in fixed plots with different soils and topography in a humid-temperate forest. We then calculated the CWC from the observed θ–SWR relationship at each point. We tested the normality of the CWC and θ distributions and the correlation between CWC and θ. Then, we determined f(x) from the CWC and θ distributions and estimated the SWRarea on each measurement day. Although CWC and θ were both normally distributed, in many cases they were correlated. Nevertheless, the CWC–θ dependency had little effect on the estimation error, and f(x) explained 69% of the SWRarea variability. Our findings show that a stochastic approach is useful for estimating SWRarea.


Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115264
Author(s):  
Enoch V.S. Wong ◽  
Philip R. Ward ◽  
Daniel V. Murphy ◽  
Matthias Leopold ◽  
Louise Barton

2014 ◽  
Vol 65 (3) ◽  
pp. 360-368 ◽  
Author(s):  
I. Kim ◽  
R. R. Pullanagari ◽  
M. Deurer ◽  
R. Singh ◽  
K. Y. Huh ◽  
...  

2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2014 ◽  
Vol 27 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
Nicasio T. Jiménez‐Morillo ◽  
José A. González‐Pérez ◽  
Antonio Jordán ◽  
Lorena M. Zavala ◽  
José María Rosa ◽  
...  

Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

Soil water repellency (SWR) was measured for a 28 yr field study under irrigation on a clay loam Dark Brown soil in southern Alberta. The objectives were to study the effect of legume-cereal crop rotations, feedlot manure, and phosphorus (P) fertilizer application on soil hydrophobicity (SH) and soil water repellency index (RI) under irrigation. Mean SH and RI were similar (P > 0.05) for a legume-cereal and cereal rotation, and were unaffected by P fertilization. However, P fertilization shifted the RI classification from slight to sub-critical. In contrast, SH was significantly greater for manured than non-manured treatments, while RI was unaffected. Soil organic carbon (SOC) concentration was significantly (P ≤ 0.05) correlated with SH (r=0.74), but not with RI (r=-0.17). This suggested a closer association between the quantity of SOC and quantity of hydrophobic compounds (SH method) compared to the hydrophobic coatings inhibiting infiltration of water (RI method). No significant correlation between SH and RI (r=-0.09) suggests that SH is not a good predictor of SWR using the RI method. Overall, manure application increased SH and P fertilization shifted the RI classification from slight to sub-critical. In contrast, legume-cereal rotations had no influence on SH and SWR using RI method compared to continuous cereal.


Sign in / Sign up

Export Citation Format

Share Document