APPLICATION OF SOIL-WATER-ATMOSPHERE-PLANT MODEL TO ASSESS PERFORMANCE OF SUBSURFACE DRAINAGE SYSTEM UNDER SEMI-ARID MONSOON CLIMATE

2013 ◽  
Vol 63 (1) ◽  
pp. 93-101 ◽  
Author(s):  
A. K. Verma ◽  
S. K. Gupta ◽  
R. K. Isaac
2010 ◽  
Vol 44-45 (2010-2011) ◽  
pp. 1-7
Author(s):  
Michael Aide ◽  
Indi Braden ◽  
Neil Hermann ◽  
David Mauk ◽  
Wesley Mueller ◽  
...  

Abstract Controlled subsurface drainage irrigation systems have been designed to promote agronomic performance and to limit overland transport of nutrients during high rainfall events. In this manuscript we describe the design of a 40 ha controlled subsurface drainage irrigation system, describe the soil resource and describe the soil water contents influenced by drainage and irrigation operations. With the use of the Subsurface controlled irrigation/drainage system, crop yields approach regional yield thresholds and soil water contents were maintained between field capacity and the maximum allowed soil water deficit, thus optimizing crop growth and development. In companion manuscripts we describe agronomic performance of corn (Zea mays L.), nutrient uptake patterns, and nutrient concentrations from tile drain effluents and note their potential impact on surface water resources.


2021 ◽  
Vol 58 (1) ◽  
pp. 73-89
Author(s):  
Poonam Kiran ◽  
J. P. Singh

Water management simulation model DRAINMOD-S was calibrated (1995-96) and validated (1997) using 3-year experimental field data (1995-1997) from the installed subsurface drainage system at 1.8 m drain depth with 40, 60, and 80 m drain spacing at Golewala watershed, Faridkot, Punjab, India. Sensitivity analysis of the model parameters revealed that lateral saturated hydraulic conductivity, drain depth, and drain spacing are the most effective parameters in changing the model output. The root means square error, efficiency, and coefficient of determination between observed and simulated soil salinity ranged from 0.01to 0.06 dS.m-1, 0.647 to 0.834 dS.m-1, and 0.957 to 0.999 dS.m-1 for three drain spacings (40, 60, and 80 m), respectively, during calibration and validation period. The calibrated and validated model was used to predict the soil salinity (EC) for five consecutive years (1998-2003). The average soil salinity of root zone (300-600 mm), (600-900 mm), and (900-1200 mm) decreased from January 1998 to December 2003. The predicted values of soil salinity were found to decrease from 2.23, 2.34, and 1.92 dS.m-1 to 1.68 dS.m-1, 1.70, and 1.42 dS.m-1 for 40 m drain spacing at root zone depth of 300-600 mm, 600-900 mm, and 900-1200 mm, respectively. Similarly, the salinity values for the same period and root zone depth were found to decrease from 2.20, 2.31, and 1.90 dS.m-1 to 1.75,1.78, and 1.74 dS.m-1 for 60 m drain spacing; and 2.21, 2.31, and 1.93 dS.m-1 to 1.80,1.82, and 1.48 dS.m-1 for 80 m drain spacing, respectively, at the end of five years. DRAINMOD-S model was reliably applicable for predicting soil salinity under sub-surface drainage system in arid and semi-arid region of Punjab, India


2021 ◽  
Vol 13 (6) ◽  
pp. 1137
Author(s):  
Xihong Cui ◽  
Zheng Zhang ◽  
Li Guo ◽  
Xinbo Liu ◽  
Zhenxian Quan ◽  
...  

To analyze the root-soil water relationship at the stand level, we integrated ground-penetrating radar (GPR), which characterized the distribution of lateral coarse roots (>2 mm in diameter) of shrubs (Caragana microphylla Lam.), with soil core sampling, which mapped soil water content (SWC) distribution. GPR surveys and soil sampling were carried out in two plots (Plot 1 in 2017 and Plot 2 in 2018) with the same size (30 × 30 m2) in the sandy soil of the semi-arid shrubland in northern China. First, the survey area was divided into five depth intervals, i.e., 0–20, 20–40, 40–60, 60–80, and 80–100 cm. Each depth interval was then divided into three zones in the horizontal direction, including root-rich canopy-covered area, root-rich canopy-free area, and root-poor area, to indicate different surface distances to the canopy. The generalized additive models (GAMs) were used to analyze the correlation between root distribution density and SWC after the spatial autocorrelation of each variable was eliminated. Results showed that the root-soil water relationship varies between the vertical and horizontal directions. Vertically, more roots are distributed in soil with high SWC and fewer roots in soil with low SWC. Namely, root distribution density is positively correlated with SWC in the vertical direction. Horizontally, the root-soil water relationship is, however, more complex. In the canopy-free area of Plot 1, the root-soil water relationship was significant (p < 0.05) and negatively correlated in the middle two depth intervals (20–40 cm and 40–60 cm). In the same two depth intervals in the canopy-free area of Plot 2, the root-soil water relationship was also significant (p < 0.01) but non-monotonic correlated, that is, with the root distribution density increasing, the mean SWC decreased first and then increased. Moreover, we discussed possible mechanisms, e.g., root water uptake, 3D root distribution, preferential flow along roots, and different growing stages, which might lead to the spatially anisotropic relationship between root distribution and SWC at the stand level. This study demonstrates the advantages of GPR in ecohydrology studies at the field scale that is challenging for traditional methods. Results reported here complement existing knowledge about the root-soil water relationship in semi-arid environments and shed new insights on modeling the complex ecohydrological processes in the root zone.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


2018 ◽  
Vol 203 ◽  
pp. 07005 ◽  
Author(s):  
Abdurrasheed Sa'id Abdurrasheed ◽  
Khamaruzaman Wan Yusof ◽  
Husna Bt Takaijudin ◽  
Aminuddin Ab. Ghani ◽  
Muhammad Mujahid Muhammad ◽  
...  

Subsurface drainage modules are important components of the Bio-ecological Drainage System (BIOECODS) which is a system designed to manage stormwater quantity and quality using constructed grass swales, subsurface modules, dry and wet ponds. BIOECODS is gradually gaining attention as one of the most ecologically sustainable solutions to the frequent flash floods in Malaysia and the rest of the world with a focus on the impact of the subsurface modules to the effectiveness of the system. Nearly two decades of post-construction research in the BIOECODS technology, there is need to review findings and areas of improvement in the system. Thus, this study highlighted the key advances and challenges in these subsurface drainage modules through an extensive review of related literature. From the study, more work is required on the hydraulic characteristics, flow attenuation and direct validation methods between field, laboratory, and numerical data. Also, there is concern over the loss of efficiency during the design life especially the infiltration capacity of the module, the state of the geotextile and hydronet over time. It is recommended for the sake of higher performance, that there should be an onsite methodology to assess the permeability, rate of clogging and condition of the geotextile as well as the hydronet over time.


2003 ◽  
Vol 75 (2) ◽  
pp. 173-187 ◽  
Author(s):  
Luiz A. Fernandes ◽  
Paulo C. F. Giannini ◽  
Ana Maria Góes

The Bauru Basin (Upper Cretaceous) accumulated an essentially sandy continental sedimentary sequence. In a first desertic phase the basaltic substratum was covered by a widespread and homogeneous aeolian sand unit with minor loess intercalations. The substratum relief favored the formation of an endorheic drainage system under semi-arid climate, a process that started the development of the Araçatuba Paleoswamp. The palustrine deposits (Araçatuba Formation) comprise siltstone and tipically greenish gray narrow tabular strata of sandstone cemented by carbonate. Moulds and gypsite and dolomite pseudomorphs were identified. The moulds seem to be genetically associated with desiccation cracks, root marks and climbing ripple lamination levels, that, on the whole, indicate calm shallow saline waters undergoing phases of subaerial exposition. At the boundaries of the study area, sand units may exhibit sigmoidal features and convolute bedding structure, which is characteristic of marginal deltaic deposits. The Araçatuba Formation is enclosed in and later overlaid by the aeolian deposits of the Vale do Rio do Peixe Formation.


Sign in / Sign up

Export Citation Format

Share Document