scholarly journals The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase.

1995 ◽  
Vol 14 (22) ◽  
pp. 5618-5625 ◽  
Author(s):  
G. H. Baeg ◽  
A. Matsumine ◽  
T. Kuroda ◽  
R. N. Bhattacharjee ◽  
I. Miyashiro ◽  
...  
Placenta ◽  
1994 ◽  
Vol 15 (4) ◽  
pp. 399-409 ◽  
Author(s):  
M. Roncalli ◽  
G. Bulfamante ◽  
G. Viale ◽  
D.R. Springall ◽  
R. Alfano ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 898-898
Author(s):  
Cassandra L Love ◽  
Dereje Jima ◽  
Zhen Sun ◽  
Rodney R. Miles ◽  
Cherie H. Dunphy ◽  
...  

Abstract Abstract 898 Burkitt Lymphoma (BL) is a highly proliferative form of non-Hodgkin lymphoma and is characterized by translocation of the C-MYC gene to the immunoglobulin gene loci resulting in deregulation. The role of collaborating gene mutations in BL is largely unknown. We performed whole exome sequencing and gene expression profiling of 57 Burkitt lymphoma and 94 DLBCL exomes. Mutational analysis revealed that ID3 is recurrently mutated in 38% of Burkitt lymphoma samples. ID3 mutations did not occur in any of the 94 DLBCL cases. ID3 gene expression was also found to be a distinguishing feature of Burkitt lymphomas (P<10−6), compared to DLBCL. We found a total of 27 distinct mutations in the ID3 genes among the 22 BL cases. These included five frameshift, four nonsense, and 18 missense mutations. We validated 16 of these events with Sanger sequencing with over 90% concordance. All of these mutations were located in the highly conserved helix-loop-helix region located on Exon 1. We explored the biological significance of ID3 mutations by initially comparing the gene expression profiles of BL cases that had mutated and wild-type ID3. Gene set enrichment analysis showed that those samples with mutated ID3 had higher expression of genes that were involved in cell cycle regulation, specifically those involved in the G1-S transition (P=0.01). In order to experimentally investigate the functional consequences of ID3 mutation, we generated mutant constructs corresponding to six different ID3 mutations observed in BLs. These mutant constructs were cloned into lentiviral vectors and overexpressed in BL cells that were wild type for ID3. We then performed cell cycle analysis for these wild type cells expressing GFP controls or the mutant constructs. We found that BL cells expressing each of the six mutant constructs demonstrated significant cell cycle progression from G1 to S phase compared to wild-type (P=0.01). Separately, we tested the effects of expressing mutant ID3 in cell proliferation assays and found that cells expressing mutant ID3 were considerably more proliferative than those expressing wild type (P=0.03). Conversely, we over-expressed the wild type form of ID3 in BL cells that had mutated ID3. These experiments completely rescued the observed phenotypes of the mutant ID3 constructs, with reduced cell cycle progression through increased G1 phase and decreased S-phase (P=0.04). We also noted decreased cell proliferation in these cells (P=0.03). These experiments support a role for ID3 as a novel tumor suppressor gene in Burkitt lymphoma. ID3 is a basic helix loop helix (bHLH) protein that binds to other E-proteins, blocking their ability to bind DNA. ID3 has been shown to be involved in a variety of biological processes including development and T and B cell differentiation. ID3 knockout mice have been shown to develop T cell as well as B cell lymphomas. Our data implicates this gene for the first time as a tumor suppressor in human cancer. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 114 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Serapion Pyrpassopoulos ◽  
Angela Ladopoulou ◽  
Metaxia Vlassi ◽  
Yannis Papanikolau ◽  
Constantinos E. Vorgias ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 205
Author(s):  
Su-Jin Jeong ◽  
Jeong-Wook Choi ◽  
Min-Kyeong Lee ◽  
Youn-Hee Choi ◽  
Taek-Jeong Nam

Spirulina is a type of filamentous blue-green microalgae known to be rich in nutrients and to have pharmacological effects, but the effect of spirulina on the small intestine epithelium is not well understood. Therefore, this study aims to investigate the proliferative effects of spirulina crude protein (SPCP) on a rat intestinal epithelial cells IEC-6 to elucidate the mechanisms underlying its effect. First, the results of wound-healing and cell viability assays demonstrated that SPCP promoted migration and proliferation in a dose-dependent manner. Subsequently, when the mechanisms of migration and proliferation promotion by SPCP were confirmed, we found that the epidermal growth factor receptor (EGFR) and mitogen-activated protein (MAPK) signaling pathways were activated by phosphorylation. Cell cycle progression from G0/G1 to S phase was also promoted by SPCP through upregulation of the expression levels of cyclins and cyclin-dependent kinases (Cdks), which regulate cell cycle progression to the S phase. Meanwhile, the expression of cyclin-dependent kinase inhibitors (CKIs), such as p21 and p27, decreased with SPCP. In conclusion, our results indicate that activation of EGFR and its downstream signaling pathway by SPCP treatment regulates cell cycle progression. Therefore, these results contribute to the research on the molecular mechanism for SPCP promoting the migration and proliferation of rat intestinal epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document