A mathematical model for predicting drug release from a biodurable drug-eluting stent coating

2008 ◽  
Vol 87A (2) ◽  
pp. 487-493 ◽  
Author(s):  
Syed Hossainy ◽  
Santosh Prabhu
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1165
Author(s):  
Zhanna K. Nazarkina ◽  
Boris P. Chelobanov ◽  
Konstantin A. Kuznetsov ◽  
Alexey V. Shutov ◽  
Irina V. Romanova ◽  
...  

It was previously shown that polycaprolactone (PCL)-based electrospun-produced paclitaxel (PTX)-enriched matrices exhibit long-term drug release kinetics and can be used as coatings for drug-eluting stents (DES). The installation of vascular stents involves a twofold increase in stent diameter and, therefore, an elongation of the matrices covering the stents, as well as the arterial wall in a stented area. We studied the influence of matrix elongation on its structure and PTX release using three different electrospun-produced matrices. The data obtained demonstrate that matrix elongation during stent installation does not lead to fiber breaks and does not interfere with the kinetics of PTX release. To study PTX diffusion through the expanded artery wall, stents coated with 5%PCL/10%HSA/3%DMSO/PTX and containing tritium-labeled PTX were installed into the freshly obtained iliac artery of a rabbit. The PTX passing through the artery wall was quantified using a scintillator β-counter. The artery retained the PTX and decreased its release from the coating. The retention of PTX by the arterial wall was more efficient when incubated in blood plasma in comparison with PBS. The retention/accumulation of PTX by the arterial wall provides a prolonged drug release and allows for the reduction in the dose of the drugs in electrospun-produced stent coatings.


2008 ◽  
Vol 85A (4) ◽  
pp. 1064-1071 ◽  
Author(s):  
Kishore Udipi ◽  
Mingfei Chen ◽  
Peiwen Cheng ◽  
Kevin Jiang ◽  
Diane Judd ◽  
...  

2021 ◽  
Vol 321 ◽  
pp. 04011
Author(s):  
Navideh Abbasnezhad ◽  
Farid Bakir ◽  
Stéphane Champmartin ◽  
Mohammadali Shirinbayan

Drug-eluting stents implanted in blood vessels are subject to various dynamics of blood flow. In this study, we present the evaluation of a mathematical model considering the effect of flow rate, to simulate the kinetic profiles of drug release (Diclofenac Sodium (DS)) from in-vitro from PLGA films. This model solves a set of non-linear equation for modeling simultaneously the burst, diffusion, swelling and erosion involved in the mechanisms of liberation. The release parameters depending on the flow rate are determined using the corresponding mathematical equations. For the evaluation of the proposed model, test data obtained in our laboratory are used. To quantify DS release from drug-carrier PLGA films, we used the flow-through cell apparatus in a closed-loop. Four flow rate values are applied. For each value, the model-substance liberation kinetics showed an increase in drug released with the flow rate. The simulated release profiles show good agreement with the experimental results. Therefore, the use of this model could provide a practical tool to assess in-vitro drug release profiles from polymer matrices under continuous flow rate constraint, and could help improve the design of drug eluting stents.


Sign in / Sign up

Export Citation Format

Share Document