Toward biomimetic materials in bone regeneration: Functional behavior of mesenchymal stem cells on a broad spectrum of extracellular matrix components

2010 ◽  
Vol 95A (4) ◽  
pp. 1114-1124 ◽  
Author(s):  
Andrea Ode ◽  
Georg N. Duda ◽  
Juliane D. Glaeser ◽  
Georg Matziolis ◽  
Simone Frauenschuh ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
pp. 38
Author(s):  
Eitan Mijiritsky ◽  
Letizia Ferroni ◽  
Chiara Gardin ◽  
Oren Peleg ◽  
Alper Gultekin ◽  
...  

Analyses of composition, distribution of cellular and extracellular matrix components, and molecular analysis of mitochondria related genes of bone loss in the presence of inflammatory environment in humans was the aim of the present project. As a human model we chose peri-implantitis. Morphological analyses were performed by means classical histological, immunohistochemical, and SEM (scanning electron miscroscopy) test. Gene expression analysis was performed to evaluate epithelium maturation, collagen fiber production, and genes related to mitochondrial activity. It was found that a well-defined keratinocyte epithelium was present on the top of all specimens; a distinct basal lamina was present, as well as desmosomes and autophagic processes related to the maturation of keratinocytes. Under this epithelium, a full inflammatory cell infiltrate was present for about 60% of the represented by plasma cells. Collagen type I fibers were present mainly in the form of fragmented cord tissue without cells. A different distribution of blood vessels was also present from the apical to the most coronal portion of the specimens. High levels of genes related to oxidative stress were present, as well as the activation of genes related to the loss of ability of osteogenic commitment of Mesenchymal stem cells into osteoblasts. Our study suggests that peri-implantitis lesions exhibit a well defined biological organization not only in terms of inflammatory cells but also on vessel and extracellular matrix components even if no difference in the epithelium is evident, and that the presence of reactive oxygen species (ROS) related to the inflammatory environment influences the correct commitment of Mesenchymal stem cells.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1408
Author(s):  
Susumu Horikoshi ◽  
Mikihito Kajiya ◽  
Souta Motoike ◽  
Mai Yoshino ◽  
Shin Morimoto ◽  
...  

Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.


2018 ◽  
Vol 24 (1-2) ◽  
pp. 145-156 ◽  
Author(s):  
Navaneethakrishnan Krishnamoorthy ◽  
Yuan‐Tsan Tseng ◽  
Poornima Gajendrarao ◽  
Padmini Sarathchandra ◽  
Ann McCormack ◽  
...  

2014 ◽  
Vol 30 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Bret H Clough ◽  
Matthew R McCarley ◽  
Ulf Krause ◽  
Suzanne Zeitouni ◽  
Jeremiah J Froese ◽  
...  

2009 ◽  
Vol 73 (10) ◽  
pp. 2226-2233 ◽  
Author(s):  
Shi-Wu DONG ◽  
Da-Jun YING ◽  
Xiao-Jun DUAN ◽  
Zhao XIE ◽  
Zi-Jiang YU ◽  
...  

2003 ◽  
Vol 2003 (3) ◽  
pp. 164-169 ◽  
Author(s):  
Carlos E. Semino

Animals carry stem cells throughout their entire life, from embryogenesis to senescence. Their function during development and adulthood consists basically of forming and sustaining functional tissues while maintaining a small self-renewing population. They reside in a complex three-dimensional environment consisting of other nearby cells extracellular matrix components, endogenous or exogenous soluble factors, and physical, structural, or mechanical properties of the tissues they inhabit. Can we artificially recreate tissue development such that stem cells can both self-renew and be instructed to mature properly? The main factors required to regulate the maintenance and differentiation of some types of stem cells are known. In addition, new bioengineered synthetic materials that mimic extracellular matrix components can be used as initial scaffolding for building stem cell microenvironments.


Sign in / Sign up

Export Citation Format

Share Document