Alternation of extracellular matrix remodeling and apoptosis by activation of the aryl hydrocarbon receptor pathway in human periodontal ligament cells

2012 ◽  
Vol 113 (10) ◽  
pp. 3093-3103 ◽  
Author(s):  
Atsushi Tomokiyo ◽  
Hidefumi Maeda ◽  
Shinsuke Fujii ◽  
Satoshi Monnouchi ◽  
Naohisa Wada ◽  
...  
2006 ◽  
Vol 95 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Eric A. Andreasen ◽  
Lijoy K. Mathew ◽  
Christiane V. Löhr ◽  
Rachelle Hasson ◽  
Robert L. Tanguay

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Cheri L. Lamb ◽  
Giovan N. Cholico ◽  
Daniel E. Perkins ◽  
Michael T. Fewkes ◽  
Julia Thom Oxford ◽  
...  

The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Christian Kirschneck ◽  
Erika Calvano Küchler ◽  
Michael Wolf ◽  
Gerrit Spanier ◽  
Peter Proff ◽  
...  

Human periodontal ligament (hPDL) fibroblasts play a major role during periodontitis and orthodontic tooth movement, mediating periodontal inflammation, osteoclastogenesis, and collagen synthesis. The highly COX-2-selective NSAID etoricoxib has a favorable systemic side effect profile and high analgesic efficacy, particularly for orthodontic pain. In this in vitro study, we investigated possible side effects of two clinically relevant etoricoxib concentrations on the expression pattern of mechanically strained hPDL fibroblasts and associated osteoclastogenesis in a model of simulated orthodontic compressive strain occurring during orthodontic tooth movement. hPDL fibroblasts were incubated for 72 h under physiological conditions with etoricoxib at 0 μM, 3.29 μM, and 5.49 μM, corresponding to clinically normal and subtoxic dosages, with and without mechanical strain by compression (2 g/cm2) for the final 48 h, simulating conditions during orthodontic tooth movement in compressive areas of the periodontal ligament. We then determined gene and/or protein expression of COX-2, IL-6, PG-E2, RANK-L, OPG, ALPL, VEGF-A, P4HA1, COL1A2, and FN1 via RT-qPCR, ELISA, and Western blot analyses as well as apoptosis, necrosis, cell viability, and cytotoxicity via FACS, MTT, and LDH assays. In addition, hPDL fibroblast-mediated osteoclastogenesis was assessed by TRAP staining in coculture with RAW267.4 cells for another 72 h. Gene and protein expression of all evaluated factors was significantly induced by the mechanical compressive strain applied. Etoricoxib at 3.29 μM and 5.49 μM significantly inhibited PG-E2 synthesis, but not COX-2 and IL-6 gene expression nor RANK-L-/OPG-mediated osteoclastogenesis or angiogenesis (VEGF-A). Extracellular matrix remodeling (COL1A2, FN1) and bone anabolism (ALPL), by contrast, were significantly stimulated particularly at 5.49 μM. In general, no adverse etoricoxib effects on hPDL fibroblasts regarding apoptosis, necrosis, cell viability, or cytotoxicity were detected. Clinically dosed etoricoxib, that is, a highly selective COX-2 inhibition, did not have substantial effects on hPDL fibroblast-mediated periodontal inflammation, extracellular matrix remodeling, RANK-L/OPG expression, and osteoclastogenesis during simulated orthodontic compressive strain.


Sign in / Sign up

Export Citation Format

Share Document