Inhibition of protein synthesis and heat protection: Histidinol-resistant mutant cell lines

1991 ◽  
Vol 149 (3) ◽  
pp. 396-402 ◽  
Author(s):  
Yong J. Lee ◽  
Zi-Zheng Hou ◽  
Dooha Kim ◽  
Abdul Al-Saadi ◽  
Peter M. Corry
2021 ◽  
Author(s):  
Maryam Saffarian Abbas Zadeh ◽  
Rebecca Anne MacPherson ◽  
Guohui Huang ◽  
Hui Ding ◽  
Rhonda Reigers Powell ◽  
...  

Abstract Programmed cell death is a dynamic and critical mechanism of cell suicide in eukaryotes and prokaryotes. MazF is a ribonuclease protein involved in bacterial intracellular programmed death. This protein cleaves mRNAs at ACA sequences, leading to inhibition of protein synthesis and triggering cell death. Given that cancer is heterogenic and has varied susceptibility to treatment, we examined the impact of MazF proteins on the growth and viability of three cancer cell lines: MCF7, HT29, and AGS. These cell lines were transfected with ACA-less mazF mRNAs and evaluated for MazF-mediated cell death. The data illustrated that efficient MazF translation leads to a significant reduction in cell viability and is modulated by structural elements of ACA-less mazF mRNAs. In the presence of MazF, the levels of activated caspase-3 and -7 were significantly elevated in transfected cells, confirming the occurrence of apoptosis. We also quantified mRNA translation on a single-cell basis in MCF7 and AGS cell lines to examine MazF-mediated inhibition of protein synthesis. MazF expression significant decreases the levels of protein translation in the examined cell lines. This is the first report of MazF as a potential anti-cancer agent via induction of apoptosis in MCF7, AGS, and HT-29 cell lines.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3641-3641
Author(s):  
Sung Ah Jun ◽  
Lusia Sepiashvili ◽  
Thomas Kislinger ◽  
Mark D. Minden

Abstract Abstract 3641 Introduction: L-asparaginase (LA) in combination with other drugs has been one of the standard components of acute lymphocytic leukemia (ALL) therapy for decades. Its antineoplastic effects are likely caused by its depletion of extracellular asparagine and glutamine creating a state of amino acid deficiency and subsequent inhibition of protein synthesis. Despite its efficacy in ALL, LA has been used only occasionally in the treatment of other leukemias and solid tumors. Previous in vitro studies have observed varied response to LA in acute myeloid leukemia (AML) across the French-American-British subtypes. We wanted to elucidate the possible resistance mechanisms of myeloid leukemic cells during LA treatment to increase the efficacy of LA for AML treatment. One of the candidate proteins identified in multiple studies was asparagine synthetase (ASNS), an intracellular enzyme catalyzing the reverse reaction of LA whose expression is up-regulated during nutrient stress. The aim of this study was to investigate the potential of repositioning LA for AML treatment by identifying key components of the cellular response to LA in myeloid leukemic cell lines and primary AML samples. Results: In all the cell lines treated with LA, we observed an inhibition of growth rate and colony formation. Furthermore, we detected apoptotic death by annexin V and propidium iodide staining in most cell lines except for K562. We also observed a leftward shift towards monosomes in polysome profiles of LA sensitive but not insensitive cells, indicating a role for global inhibition of protein synthesis in the effect of LA. To further understand the differences in the responses between resistant and sensitive cell lines at the protein level, we utilized MudPIT (multidimensional protein identification technology) that combines 2-dimensional liquid chromatography coupled to mass spectrometry to separate and identify proteins. Using DAVID, an online program that identifies statistically significant enriched biological themes in gene lists, we compared the MudPIT identified proteomes in LA treated and untreated HL-60 (LA sensitive) and K562 (LA resistant) cells. In HL60, up-regulated proteins in the treated sample were enriched for carbohydrate metabolism (aldolase A, lactate dehydrogenase, 6-phosphogluconolactonase). We also observed decreased expression of proteins involved in cell division (replication factor C, proliferating cell nuclear antigen, minichromosome maintenance complex component 3). The data from K562 is currently being analyzed. A reported predictor of sensitivity to LA is the level of ASNS. To see if this was involved in the resistance of K562 to LA we used shRNA to knockdown ASNS in these cells. While there was some increase in the sensitivity of the cells to LA, the degree of killing did not approach that of other cell lines. Finally, AML primary samples treated with LA were inhibited in their ability to form colonies compared to untreated controls. Interestingly there was no correlation between the level of ASNS and sensitivity of the primary cells. Taken together these studies suggest that other factors are important in mediating the response of cells to LA. Conclusions: Our study shows that LA is effective in killing some forms of AML by inhibiting growth, blocking protein synthesis and inducing apoptosis. Increased sensitivity to LA in ASNS knockdown cell lines indicate a role for ASNS in LA resistance but the absence of strong correlation between ASNS expression and LA resistance in primary samples suggest that ASNS is not solely responsible. The availability of sensitive and resistant myeloid cells provides us with the opportunity to identify mechanisms of resistance. The identification of differentially expressed proteins in the sensitive and resistant cells using MudPIT will help to identify targets that if blocked can synergize with LA and render a resistant cell sensitive. Disclosures: Off Label Use: L-asparaginase is a drug used to treat acute lymphocytic leukemia.


Toxins ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
Sára Kellnerová ◽  
Sneha Chatterjee ◽  
Rafael Bayarri-Olmos ◽  
Louise Justesen ◽  
Heribert Talasz ◽  
...  

Enterohemorrhagic Escherichia coli (EHEC) infections can cause EHEC-associated hemolytic uremic syndrome (eHUS) via its main virulent factor, Shiga toxins (Stxs). Complement has been reported to be involved in the progression of eHUS. The aim of this study was to investigate the interactions of the most effective subtype of the toxin, Stx2a, with pivotal complement proteins C3b and C5. The study further examined the effect of Stx2a stimulation on the transcription and synthesis of these complement proteins in human target cell lines. Binding of Stx2a to C3b and C5 was evaluated by ELISA. Kidney and gut cell lines (HK-2 and HCT-8) were stimulated with varied concentrations of Stx2a. Subsequent evaluation of complement gene transcription was studied by real-time PCR (qPCR), and ELISAs and Western blots were performed to examine protein synthesis of C3 and C5 in supernatants and lysates of stimulated HK-2 cells. Stx2a showed a specific binding to C3b and C5. Gene transcription of C3 and C5 was upregulated with increasing concentrations of Stx2a in both cell lines, but protein synthesis was not. This study demonstrates the binding of Stx2a to complement proteins C3b and C5, which could potentially be involved in regulating complement during eHUS infection, supporting further investigations into elucidating the role of complement in eHUS pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document