Ornithine decarboxylase gene expression is aberrantly regulated via the cAMP signal transduction pathway in malignant H-ras transformed cell lines

1994 ◽  
Vol 161 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Robert A. R. Hurta ◽  
Jim A. Wright
1998 ◽  
Vol 851 (1 STRESS OF LIF) ◽  
pp. 129-138 ◽  
Author(s):  
DIPAK K. DAS ◽  
NILANJANA MAULIK ◽  
RICHARD M. ENGELMAN ◽  
JOHN A. ROUSOU ◽  
DAVID DEATON ◽  
...  

Platelets ◽  
2020 ◽  
Author(s):  
Sonia Águila ◽  
Ernesto Cuenca-Zamora ◽  
Constantino Martínez ◽  
Raúl Teruel-Montoya

In this chapter, we discuss different topics always using the microRNA as the guiding thread of the review. MicroRNAs, member of small noncoding RNAs family, are an important element involved in gene expression. We cover different issues such as their importance in the differentiation and maturation of megakaryocytes (megakaryopoiesis), as well as the role in platelets formation (thrombopoiesis) focusing on the described relationship between miRNA and critical myeloid lineage transcription factors such as RUNX1, chemokines receptors as CRCX4, or central hormones in platelet homeostasis like TPO, as well as its receptor (MPL) and the TPO signal transduction pathway, that is JAK/STAT. In addition to platelet biogenesis, we review the microRNA participation in platelets physiology and function. This review also introduces the use of miRNAs as biomarkers of platelet function since the detection of pathogenic situations or response to therapy using these noncoding RNAs is getting increasing interest in disease management. Finally, this chapter describes the participation of platelets in cellular interplay, since extracellular vesicles have been demonstrated to have the ability to deliver microRNAs to others cells, modulating their function through intercellular communication, redefining the extracellular vesicles from the so-called “platelet dust” to become mediators of intercellular communication.


2021 ◽  
Author(s):  
Anubama Rajan ◽  
Felipe-Andres Piedra ◽  
Letisha Aideyan ◽  
Trevor McBride ◽  
Matthew J Robertson ◽  
...  

Respiratory syncytial virus (RSV) is a leading cause of pediatric acute respiratory infection worldwide. There are currently no approved vaccines or antivirals to combat RSV disease. A few transformed cell lines and two historic strains have been extensively used to study RSV. Here we report a thorough molecular and cell biological characterization of HEp-2 and A549 cells infected with four strains of RSV representing both major subgroups as well as historic and more contemporaneous genotypes -- [RSV/A/Tracy (GA1), RSV/A/Ontario (ON), RSV/B/18537 (GB1), RSV/B/Buenos Aires (BA)] -- via measurements of viral replication kinetics and viral gene expression, immunofluorescence-based imaging of gross cellular morphology and cell-associated RSV, and measurements of host response including transcriptional changes and levels of secreted cytokines and growth factors. Our findings strongly suggest 1) the existence of a conserved difference in gene expression between RSV subgroups A and B; 2) the A549 cell line is a more stringent and natural host of replicating RSV than the HEp-2 cell line; and 3) consistent with previous studies, determining the full effects of viral genetic variation in RSV pathogenesis requires model systems as tractable as transformed cell lines but better representative of the human host.


BioTechniques ◽  
2020 ◽  
Vol 68 (3) ◽  
pp. 163-165
Author(s):  
Yu Tang ◽  
Richard H Gomer

Shotgun expression of antisense cDNA, where each transformed cell expresses a different antisense cDNA, has been used for mutagenesis and gene identification in Dictyostelium discoideum. However, the method has two limitations. First, there were too few clones in the shotgun antisense cDNA library to have an antisense cDNA for every gene in the genome. Second, the unequal transcription level of genes resulted in many antisense cDNAs in the library for some genes but relatively few antisense cDNAs for other genes. Here we report an improved method for generating a larger antisense cDNA library with a reduced percentage of cDNA clones from highly prevalent mRNAs and demonstrate its utility by screening for signal transduction pathway components in D. discoideum.


1999 ◽  
pp. 447-451 ◽  
Author(s):  
F Trapasso ◽  
R Iuliano ◽  
E Chiefari ◽  
F Arturi ◽  
A Stella ◽  
...  

OBJECTIVE: Decrease or loss of the Na+/I- symporter (NIS) activity profoundly affects the suitability of the use of radioiodine to detect or treat metastatic thyroid tissues. The aim of our study was to verify whether specific oncogene abnormalities were responsible for the alteration in NIS activity in thyroid cells. DESIGN AND METHODS: Expression of the NIS gene was investigated by Northern blot analysis in normal and in some oncogene-transformed cell lines with different degrees of malignancy which had lost the iodide uptake ability. RESULTS: NIS gene expression was up-regulated by TSH in a dose-dependent and time-dependent way in normal PC Cl 3 cells. The same effect was observed by activating the cAMP-dependent pathway by forskolin. Conversely, insulin and 12-O-tetradecanoylphorbol-13-acetate (TPA) showed a partial inhibitory effect on NIS gene expression. The oncogene-transformed cell lines PC v-erbA, PC HaMSV, PC v-raf, and PC E1A cells showed reduced NIS mRNA levels compared with the normal PC Cl 3 cells. Conversely, an almost complete absence of NIS gene expression was found in PC RET/PTC, PC KiMSV, PC p53(143ala), and PC PyMLV cell lines. CONCLUSIONS: Our data show that oncogene activation could play a role in affecting the iodide uptake ability in thyroid tumoral cells; different mechanisms are involved in the oncogene-dependent loss of NIS activity in transformed thyroid cells.


Sign in / Sign up

Export Citation Format

Share Document