To unravel the molecular regulation of renal transcellular Ca2+ transport, a murine distal convoluted tubule (mpkDCT) cell line derived from distal convoluted tubules (DCT) microdissected from a SV-PK/Tag transgenic mouse was characterized. This cell line originated from DCT only, as mRNA encoding for the DCT marker thiazide-sensitive Na+/Cl- cotransporter was expressed, whereas mRNA encoding for the connecting tubule and collecting duct marker aquaporin-2 was not detected, as determined by reverse-transcriptase PCR. mpkDCT cells expressed mRNA encoding the Ca2+ channels TRPV5 and TRPV6 and other key players necessary for transcellular Ca2+ transport, i.e., calbindin-D9k, calbindin-D28k, plasma membrane Ca2+-ATPase isoform 1b, and Na+/Ca2+ exchanger 1. Primary cultures of DCT cells exhibited net transcellular Ca2+ transport of 0.4 ± 0.1 nmol·h-1·cm-2, whereas net transcellular Ca2+ transport across mpkDCT cells was significantly higher at 2.4 ± 0.4 nmol·h-1·cm-2. Transcellular Ca2+ transport across mpkDCT cells was completely inhibited by ruthenium red, an inhibitor of TRPV5 and TRPV6, but not by the voltage-operated Ca2+ channel inhibitors felodipine and verapamil. With the use of patch-clamp analysis, the IC50 of ruthenium red on Na+ currents was between the values measured for TRPV5- and TRPV6-expressing HEK 293 cells, suggesting that TRPV5 and/or TRPV6 is possibly active in mpkDCT cells. Forskolin in combination with IBMX, 1,25-dihydroxyvitamin D3, and 1-deamino-8-d-arginine vasopressin increased transcellular Ca2+ transport, whereas PMA and parathyroid hormone had no significant effect. In conclusion, the murine mpkDCT cell line provides a unique cell model in which to study the molecular regulation of transcellular Ca2+ transport in the kidney in vitro.