scholarly journals Karyotype of the human insulinoma CM cell line—Beta cell model in vitro?

2007 ◽  
Vol 213 (3) ◽  
pp. 661-662 ◽  
Author(s):  
Catherine Jonnakuty ◽  
Claudia Gragnoli

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Bolun Wang ◽  
Haohui Guo ◽  
Tianxiang Geng ◽  
Kening Sun ◽  
Liang Zhang ◽  
...  

Abstract Aseptic loosening following periprosthetic osteolysis is the primary complication that limits the lifetime of total joint arthroplasty (TJA). The wear particles trigger a chronic inflammation response in the periprosthetic tissue and turn over the bone balance to bone resorption. The present study aimed to investigate the possible effect and mechanism of strontium ranelate (SR), a clinically safe drug for osteoporosis, on particle-induced periprosthetic osteolysis. Thirty-six female C57BL/6j mice underwent tibial Ti-nail implantation to establish an animal model of aseptic loosening. After 12 weeks, micro-CT results showed that strontium ranelate could inhibit periprosthetic bone resorption. In vitro, Ti particles were used to stimulate RAW264.7 cell line to collect conditioned medium, and co-culture MC3T3-E1 cell line with conditioned medium to establish a cell model of aseptic loosening. The results of alkaline phosphatase (ALP) detection, immunofluorescence, and flow cytometry demonstrated that strontium ranelate could regulate the expression of OPG/RANKL, promote differentiation and mineralization, and inhibit apoptosis in osteoblasts. Moreover, we revealed that SR’s exerted its therapeutic effect by down-regulating sclerostin, thereby activating the Wnt/β-catenin signal pathway. Therefore, this research suggests that strontium ranelate could be a potential drug for the prevention and treatment of particle-induced aseptic loosening post-TJA.



2004 ◽  
Vol 286 (3) ◽  
pp. F483-F489 ◽  
Author(s):  
Robin J. W. Diepens ◽  
Els den Dekker ◽  
Marcelle Bens ◽  
A. Freek Weidema ◽  
Alain Vandewalle ◽  
...  

To unravel the molecular regulation of renal transcellular Ca2+ transport, a murine distal convoluted tubule (mpkDCT) cell line derived from distal convoluted tubules (DCT) microdissected from a SV-PK/Tag transgenic mouse was characterized. This cell line originated from DCT only, as mRNA encoding for the DCT marker thiazide-sensitive Na+/Cl- cotransporter was expressed, whereas mRNA encoding for the connecting tubule and collecting duct marker aquaporin-2 was not detected, as determined by reverse-transcriptase PCR. mpkDCT cells expressed mRNA encoding the Ca2+ channels TRPV5 and TRPV6 and other key players necessary for transcellular Ca2+ transport, i.e., calbindin-D9k, calbindin-D28k, plasma membrane Ca2+-ATPase isoform 1b, and Na+/Ca2+ exchanger 1. Primary cultures of DCT cells exhibited net transcellular Ca2+ transport of 0.4 ± 0.1 nmol·h-1·cm-2, whereas net transcellular Ca2+ transport across mpkDCT cells was significantly higher at 2.4 ± 0.4 nmol·h-1·cm-2. Transcellular Ca2+ transport across mpkDCT cells was completely inhibited by ruthenium red, an inhibitor of TRPV5 and TRPV6, but not by the voltage-operated Ca2+ channel inhibitors felodipine and verapamil. With the use of patch-clamp analysis, the IC50 of ruthenium red on Na+ currents was between the values measured for TRPV5- and TRPV6-expressing HEK 293 cells, suggesting that TRPV5 and/or TRPV6 is possibly active in mpkDCT cells. Forskolin in combination with IBMX, 1,25-dihydroxyvitamin D3, and 1-deamino-8-d-arginine vasopressin increased transcellular Ca2+ transport, whereas PMA and parathyroid hormone had no significant effect. In conclusion, the murine mpkDCT cell line provides a unique cell model in which to study the molecular regulation of transcellular Ca2+ transport in the kidney in vitro.



2019 ◽  
Vol 93 (11) ◽  
pp. 3321-3333 ◽  
Author(s):  
Martina Štampar ◽  
Jana Tomc ◽  
Metka Filipič ◽  
Bojana Žegura


Diabetologia ◽  
2010 ◽  
Vol 53 (7) ◽  
pp. 1384-1394 ◽  
Author(s):  
S. Ueberberg ◽  
D. Ziegler ◽  
W. Schechinger ◽  
J. W. Dietrich ◽  
S. Akinturk ◽  
...  


2008 ◽  
Vol 216 (2) ◽  
pp. 568-568 ◽  
Author(s):  
Maria Gisella Cavallo ◽  
Paolo Pozzilli ◽  
Silvia Misiti ◽  
Marco Giorgio Baroni


1996 ◽  
Vol 150 (1) ◽  
pp. 113-120 ◽  
Author(s):  
M G Cavallo ◽  
F Dotta ◽  
L Monetini ◽  
S Dionisi ◽  
M Previti ◽  
...  

Abstract In the present study we have evaluated the expression of different beta-cell markers, islet molecules and autoantigens relevant in diabetes autoimmunity by a human insulinoma cell line (CM) in order to define its similarities with native beta cells and to discover whether it could be considered as a model for studies on immunological aspects of Type 1 diabetes. First, the positivity of the CM cell line for known markers of neuroendocrine derivation was determined by means of immunocytochemical analysis using different anti-islet monoclonal antibodies including A2B5 and 3G5 reacting with islet gangliosides, and HISL19 binding to an islet glycoprotein. Secondly, the expression and characteristics of glutamic acid decarboxylase (GAD) and of GM2-1 ganglioside, both known to be islet autoantigens in diabetes autoimmunity and expressed by human native beta cells, were investigated in the CM cell line. The pattern of ganglioside expression in comparison to that of native beta cells was also evaluated. Thirdly, the binding of diabetic sera to CM cells reacting with islet cytoplasmic antigens (ICA) was studied by immunohistochemistry. The results of this study showed that beta cell markers identified by anti-islet monoclonal antibodies A2B5, 3G5 and HISL-19 are expressed by CM cells; similarly, islet molecules such as GAD and GM2-1 ganglioside are present and possess similar characteristics to those found in native beta cells; the pattern of expression of other gangliosides by CM cells is also identical to human pancreatic islets; beta cell autoantigen(s) reacting with antibodies present in islet cell antibodies (ICA) positive diabetic sera identified by ICA binding are also detectable in this insulinoma cell line. We conclude that CM cells show close similarities to native beta cells with respect to the expression of neuroendocrine markers, relevant beta cell autoantigens in Type 1 diabetes (GAD, GM2-1, ICA antigen), and other gangliosides. Therefore, this insulinoma cell line may be considered as an ideal model for studies aimed at investigating autoimmune phenomena occurring in Type 1 diabetes. Journal of Endocrinology (1996) 150, 113–120



2003 ◽  
Vol 176 (1) ◽  
pp. 143-150 ◽  
Author(s):  
L Monetini ◽  
F Barone ◽  
L Stefanini ◽  
A Petrone ◽  
T Walk ◽  
...  

Enhanced cellular immune response to bovine beta-casein has been reported in patients with type 1 diabetes. In this study we aimed to establish beta-casein-specific T cell lines from newly diagnosed type 1 diabetic patients and to characterise these cell lines in terms of phenotype and epitope specificity. Furthermore, since sequence homologies exist between beta-casein and putative beta-cell autoantigens, reactivity to the latter was also investigated. T cell lines were generated from the peripheral blood of nine recent onset type 1 diabetic patients with different HLA-DQ and -DR genotypes, after stimulation with antigen pulsed autologous irradiated antigen presenting cells (APCs) and recombinant human interleukin-2 (rhIL-2). T cell line reactivity was evaluated in response to bovine beta-casein, to 18 overlapping peptides encompassing the whole sequence of beta-casein and to beta-cell antigens, including the human insulinoma cell line, CM, and a peptide from the beta-cell glucose transporter, GLUT-2. T cell lines specific to beta-casein could not be isolated from HLA-matched and -unmatched control subjects. beta-Casein T cell lines reacted to different sequences of the protein, however a higher frequency of T cell reactivity was observed towards the C-terminal portion (peptides B05-14, and B05-17 in 5/9 and 4/9 T cell lines respectively). Furthermore, we found that 1 out of 9 beta-casein-specific T cell lines reacted also to the homologous peptide from GLUT-2, and that 3 out of 4 of tested cell lines reacted also to extracts of the human insulinoma cell line, CM. We conclude that T cell lines specific to bovine beta-casein can be isolated from the peripheral blood of patients with type 1 diabetes; these cell lines react with multiple and different sequences of the protein particularly towards the C-terminal portion. In addition, reactivity of beta-casein T cell lines to human insulinoma extracts and GLUT-2 peptide was detected, suggesting that the potential cross-reactivity with beta-cell antigens deserves further investigation.



Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 673 ◽  
Author(s):  
Lasse Saaby ◽  
Josefine Trasborg ◽  
Mikkel A. Rasmussen ◽  
Bjørn Holst ◽  
Birger Brodin

The efflux pump P-glycoprotein (P-gp) affects drug distribution after absorption in humans and animals. P-gp is encoded by the multidrug resistance gene (MDR1) gene in humans, while rodents (the most common preclinical animal model) express the two isoforms Mdr1a and Mdr1b. Differences in substrate selectivity has also been reported. Our aim was to generate an in vitro cell model with tight barrier properties, expressing functional rat Mdr1a P-gp, as an in vitro tool for investigating species differences. The IPEC-J2 cell line forms extremely tight monolayers and was transfected with a plasmid carrying the rat Mdr1a gene sequence. Expression and P-gp localization at the apical membrane was demonstrated with Western blots and immunocytochemistry. Function of P-gp was shown through digoxin transport experiments in the presence and absence of the P-gp inhibitor zosuquidar. Bidirectional transport experiments across monolayers of the IPEC-J2 rMDR1a cell line and the IPEC-J2 MDR1 cell line, expressing human P-gp, showed comparable magnitude of transport in both the absorptive and efflux direction. We conclude that the newly established IPEC-J2 rMdr1a cell line, in combination with our previously established cell line IPEC-J2 MDR1, has the potential to be a strong in vitro tool to compare P-gp substrate profiles of rat and human P-gp.



Author(s):  
J. Chakraborty ◽  
A. Von Stein ◽  
S. K. Saha

In spite of continuous efforts by numerous investigators, no ideal animal or in vitro cell model has so far been established for the human prostatic cancer cells. A human prostatic cancer cell line, DU 145, established by Stone et al. (1), provides a useful model for the basic understanding of malignant growth of this cell type. DU 145 has been characterized as an epithelial cell line, which retains most of its original growth characteristics (1,2). We are using this cell line as in vitro model system for biochemical, immunological and morphometric analyses, to understand the subcellular and molecular changes in these cells leading to their malignant transformation. The present paper is our first report describing a detailed characterization of DU 145 cell line.



Sign in / Sign up

Export Citation Format

Share Document