Silencing of circARHGAP12 inhibits the progression of atherosclerosis via miR‐630/EZH2/TIMP2 signal axis

Author(s):  
Renying Miao ◽  
Chaoran Qi ◽  
Yiqun Fu ◽  
Yanjun Wang ◽  
Yuchang Lang ◽  
...  
VASA ◽  
2013 ◽  
Vol 42 (2) ◽  
pp. 86-87
Author(s):  
Christine Espinola-Klein ◽  
Jörn F. Dopheide ◽  
Tommaso Gori

1989 ◽  
Vol 61 (01) ◽  
pp. 140-143 ◽  
Author(s):  
Yoshitaka Mori ◽  
Hideo Wada ◽  
Yutaka Nagano ◽  
Katsumi Deguch ◽  
Toru Kita ◽  
...  

SummaryBlood coagulation in a strain of rabbits designated as Watanabe heritable hyperlipidemic (WHHL) rabbits was examined. The activities of vitamin K-dependent clotting factors, contact factors and clotting factor VIII (F VIII) and the fibrinogen level were significantly higher in WHHL rabbits than in normolipidemic rabbits (all age groups). Values for vitamin Independent clotting factor were already higher at 2 months of age. Contact factors and fibrinogen levels increased age after 5 to 8 months. F VIII increased between 5 and 8 months and then decreased. At 2 months of age, WHHL rabbits were divided into two groups. Group A was fed standard rabbit chow and group B standard rabbit chow containing 1% probucol. Probucol prevented the progression of atherosclerosis in group B in the absence of a significant reduction in plasma cholesterol level. F VIII and fibrinogen levels were statistically decreased in all rabbits at all ages in group B (P<0.05). These differences in clotting factors between the two groups were most obvious at 8 months (P<0.02).We conclude that vitamin K-dependent clotting factors may increase with hyperlipemia and that increases in F VIII and fibrinogen may be closely related to the progression of throm- boatherosclerosis.


2007 ◽  
Vol 62 (6) ◽  
pp. 593-598 ◽  
Author(s):  
I. Iriz ◽  
M.Y. Cirak ◽  
E.D. Engin ◽  
M.H. Zor ◽  
D. Erer ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5843
Author(s):  
Chloé Turpin ◽  
Aurélie Catan ◽  
Olivier Meilhac ◽  
Emmanuel Bourdon ◽  
François Canonne-Hergaux ◽  
...  

The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.


Sign in / Sign up

Export Citation Format

Share Document