Ionic liquid-based observation technique for nonconductive materials in the scanning electron microscope: Application to the characterization of a rare earth ore

2014 ◽  
Vol 77 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Nicolas Brodusch ◽  
Kristian Waters ◽  
Hendrix Demers ◽  
Raynald Gauvin
Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2015 ◽  
Vol 1109 ◽  
pp. 381-384
Author(s):  
M. Safwan Azmi ◽  
Sharipah Nadzirah ◽  
Uda Hashim

The purpose of this paper is to study the morphological characterization of aluminum interdigitated electrodes (IDE) of different gap sizes on silicon substrate. The electrodes were fabricated using standard photolithography process and were done so with sizes of 12 μm, 10 μm and 7 μm. The electrodes were morphologically characterized using scanning electron microscope (SEM) and high-powered microscope (HPM).Keywords: morphological, interdigitated electrodes, aluminum


Sign in / Sign up

Export Citation Format

Share Document