Evaluation of the effect of four final irrigation protocols on root canal dentin components by polarized light microscopy and scanning electron microscopy

2017 ◽  
Vol 80 (12) ◽  
pp. 1337-1343 ◽  
Author(s):  
Flávia Emi Razera Baldasso ◽  
Luana Roleto Cardoso ◽  
Vinicius Duval da Silva ◽  
Renata Dornelles Morgental ◽  
Patrícia Maria Poli Kopper
1998 ◽  
Vol 4 (S2) ◽  
pp. 932-933
Author(s):  
J.P. Neilly ◽  
J.S. Deng ◽  
J.L. House ◽  
J.A. Fagerland

Septacin is a sustained-release antibiotic currently under development by the Hospital Products Division of Abbott Laboratories. The product is designed to be used as an anti-infective implant in orthopedic surgical procedures with a sustained drug release for up to six weeks in vivo. It consists of gentamicin sulfate formulated with a bioerodable polyanhydride copolymer. The polymer is biodegradable and has been approved by the FDA for human clinical trials. The final product is obtained by mixing 20% gentamicin sulfate with molten polymer and injection molding it to form cylindrical Septacin beads.The microstructure of drug particles and polymer matrix is critical to the performance of sustained release products, thus scanning electron microscopy (SEM) and polarized light microscopy (PLM) were utilized in this study. SEM has proven useful for evaluating the microstructure of drug formulations3 and was used to examine the drug-polymer matrix structure. Average drug particle size and distribution were determined, and the drug-polymer boundary was evaluated.


IAWA Journal ◽  
2020 ◽  
Vol 41 (4) ◽  
pp. 478-489 ◽  
Author(s):  
Valentina Zemke ◽  
Volker Haag ◽  
Gerald Koch

Abstract The present study focusses on the application of 3D-reflected light microscopy (3D-RLM) for the wood anatomical identification of charcoal specimens produced from domestic and tropical timbers. This special microscopic technique offers a detailed investigation of anatomical features in charcoal directly compared with the quality of field emission scanning electron microscopy (FESEM). The advantages of using the 3D-RLM technology are that fresh fracture planes of charcoal can be directly observed under the microscope without further preparation or surface treatment. Furthermore, the 3D-technique with integrated polarized light illumination creates high-contrast images of uneven and black charcoal surfaces. Important diagnostic structural features such as septate fibres and intercellular canals can be clearly detected and intervessel pits are directly measured. The comparison of the microscopic analyses reveals that 3D-reflected light microscopy (3D-RLM) provides an effective alternative technique to conventional field emission scanning electron microscopy for the identification of carbonized wood.


1989 ◽  
Vol 03 (11) ◽  
pp. 877-885
Author(s):  
C.Y. HUANG ◽  
H.H. TAI ◽  
M.K. WU

Scanning electron microscopy, energy dispersive X-ray spectroscopy, and polarized light microscopy have shown that the addition of AgO to the E uBa 2 Cu 3 O y and GdBa 2 Cu 3 O y systems results in the growth of very large grains. Distribution of silver particle appears to influence the grain formation and growth in the superconducting composites.


2000 ◽  
Vol 04 (04) ◽  
pp. 303-309
Author(s):  
László G Józsa

In this mini review, I will attempt to briefly provide the microscopic possibilities in the diagnosis of muscle and tendon disorders based on more than 1000 muscle and 2000 tendon biopsies. The routine histological sections and light microscopy are still of value in the diagnosis of tendon and muscle pathology. The morphologic methods are time-consuming, and consequently should be done step by step. In diagnostic muscle pathology, enzyme histochemistry, histomorphometry, transmission and scanning electron microscopy, and immunohistochemistry are the most reliable methods, while in tendon pathology, they are polarized light microscopy, electron microscopy and immunohistochemistry. However, the histopathological methods can be used not only in the diagnosis of muscle and tendon disorders, but can also predict the physical condition of muscles, detect the healing and regenerating processes and the effectivity of drug administration.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
D. Johnson ◽  
P. Moriearty

Since several species of Schistosoma, or blood fluke, parasitize man, these trematodes have been subjected to extensive study. Light microscopy and conventional electron microscopy have yielded much information about the morphology of the various stages; however, scanning electron microscopy has been little utilized for this purpose. As the figures demonstrate, scanning microscopy is particularly helpful in studying at high resolution characteristics of surface structure, which are important in determining host-parasite relationships.


Sign in / Sign up

Export Citation Format

Share Document