scholarly journals Gravity wave generation by convection and momentum deposition in the mesosphere-lower thermosphere

2013 ◽  
Vol 118 (12) ◽  
pp. 6233-6245 ◽  
Author(s):  
R. A. Vincent ◽  
M. J. Alexander ◽  
B. K. Dolman ◽  
A. D. MacKinnon ◽  
P. T. May ◽  
...  
2016 ◽  
Vol 9 (3) ◽  
pp. 877-908 ◽  
Author(s):  
Corwin J. Wright ◽  
Neil P. Hindley ◽  
Andrew C. Moss ◽  
Nicholas J. Mitchell

Abstract. Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ∼  100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically  > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such data sets in their full context.


2018 ◽  
Vol 75 (10) ◽  
pp. 3635-3651 ◽  
Author(s):  
Ryosuke Yasui ◽  
Kaoru Sato ◽  
Yasunobu Miyoshi

The contributions of gravity waves to the momentum budget in the mesosphere and lower thermosphere (MLT) is examined using simulation data from the Ground-to-Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA) whole-atmosphere model. Regardless of the relatively coarse model resolution, gravity waves appear in the MLT region. The resolved gravity waves largely contribute to the MLT momentum budget. A pair of positive and negative Eliassen–Palm flux divergences of the resolved gravity waves are observed in the summer MLT region, suggesting that the resolved gravity waves are likely in situ generated in the MLT region. In the summer MLT region, the mean zonal winds have a strong vertical shear that is likely formed by parameterized gravity wave forcing. The Richardson number sometimes becomes less than a quarter in the strong-shear region, suggesting that the resolved gravity waves are generated by shear instability. In addition, shear instability occurs in the low (middle) latitudes of the summer (winter) MLT region and is associated with diurnal (semidiurnal) migrating tides. Resolved gravity waves are also radiated from these regions. In Part I of this paper, it was shown that Rossby waves in the MLT region are also radiated by the barotropic and/or baroclinic instability formed by parameterized gravity wave forcing. These results strongly suggest that the forcing by gravity waves originating from the lower atmosphere causes the barotropic/baroclinic and shear instabilities in the mesosphere that, respectively, generate Rossby and gravity waves and suggest that the in situ generation and dissipation of these waves play important roles in the momentum budget of the MLT region.


2017 ◽  
Author(s):  
Rui Song ◽  
Martin Kaufmann ◽  
Jörn Ungermann ◽  
Manfred Ern ◽  
Guang Liu ◽  
...  

Abstract. Gravity waves (GWs) play an important role in atmospheric dynamics. Especially in the mesosphere and lower thermosphere (MLT) dissipating GWs provide a major contribution to the driving of the global wind system. Therefore global observations of GWs in the MLT region are of particular interest. The small scales of GWs, however, pose a major problem for the observation of GWs from space. We propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from atmospheric soundings. In our study, we simulate satellite observations of the rotational structure of the O2 A-band nightglow. A key element of the new method is the ability of the instrument or the satellite to operate in so called target mode, i.e. to stare at a particular point in the atmosphere and collect radiances at different viewing angles. These multi-angle measurements of a selected region allow for tomographic reconstruction of a 2-dimensional atmospheric state, in particular of gravity wave structures. As no real data is available, the feasibility of this tomographic retrieval is carried out with simulation data in this work. It shows that one major advantage of this observation strategy is that much smaller scale GWs can be observed. We derive a GW sensitivity function, and it is shown that target mode observations are able to capture GWs with horizontal wavelengths as short as ~ 50 km for a large range of vertical wavelengths. This is far better than the horizontal wavelength limit of 100–200 km obtained for conventional limb sounding.


2006 ◽  
Vol 24 (4) ◽  
pp. 1175-1188 ◽  
Author(s):  
E. Becker ◽  
D. C. Fritts

Abstract. We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere. We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004). In the present version, however, the model includes no gravity wave (GW) parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height. The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower thermosphere during June-August 2002 requires an enhanced Lorenz energy cycle and correspondingly enhanced GW sources in the troposphere, which in the model show up in both hemispheres.


2008 ◽  
Vol 65 (2) ◽  
pp. 557-575 ◽  
Author(s):  
Hye-Yeong Chun ◽  
Hyun-Joo Choi ◽  
In-Sun Song

Abstract In the present study, the authors propose a way to include a nonlinear forcing effect on the momentum flux spectrum of convectively forced internal gravity waves using a nondimensional numerical model (NDM) in a two-dimensional framework. In NDM, the nonlinear forcing is represented by nonlinear advection terms multiplied by the nonlinearity factor (NF) of the thermally induced internal gravity waves for a given specified diabatic forcing. It was found that the magnitudes of the waves and resultant momentum flux above the specified forcing decrease with increasing NF due to cancellation between the two forcing mechanisms. Using the momentum flux spectrum obtained by the NDM simulations with various NFs, a scale factor for the momentum flux, normalized by the momentum flux induced by diabatic forcing alone, is formulated as a function of NF. Inclusion of the nonlinear forcing effect into current convective gravity wave drag (GWD) parameterizations, which consider diabatic forcing alone by multiplying the cloud-top momentum flux spectrum by the scale factor, is proposed. An updated convective GWD parameterization using the scale factor is implemented into the NCAR Whole Atmosphere Community Climate Model (WACCM). The 10-yr simulation results, compared with those by the original convective GWD parameterization considering diabatic forcing alone, showed that the magnitude of the zonal-mean cloud-top momentum flux is reduced for wide range of phase speed spectrum by about 10%, except in the middle latitude storm-track regions where the cloud-top momentum flux is amplified. The zonal drag forcing is determined largely by the wave propagation condition under the reduced magnitude of the cloud-top momentum flux, and its magnitude decreases in many regions, but there are several areas of increasing drag forcing, especially in the tropical upper mesosphere and lower thermosphere.


2018 ◽  
Author(s):  
Xianchang Yue ◽  
Jonathan S. Friedman ◽  
Qihou Zhou ◽  
Xiongbin Wu ◽  
Jens Lautenbach

Abstract. 11-years long K Doppler lidar observations of temperature profiles in the mesosphere and lower thermosphere (MLT) between 85 and 100 km, conducted at the Arecibo Observatory, Puerto Rico (18.35° N, 66.75° W), are used to estimate seasonal variations of the mean temperature, the squared Brunt-Väisälä frequency, and the gravity wave potential energy in a composite year. The following unique features are obtained: (1) The mean temperature structure shows similar characteristics as a prior report based on a smaller dataset: (2) The profiles of the squared Brunt-Väisälä frequency usually reach the maxima at or just below the temperature inversion layer when that layer is present. The first complete range-resolved climatology of potential energy of temperature fluctuations in the tropical MLT exhibits an altitude dependent combination of annual oscillation (AO) and semiannual oscillation (SAO). Between 88 to 96 km altitude, the amplitudes of AO and SAO are comparable, and their phases are almost the same and quite close to day of year (DOY) 100. Below 88 km, the SAO amplitude is significantly larger than AO and the AO phase shifts to DOY 200 and after. At 97 to 98 km altitude, the amplitudes of AO and SAO reach their minima, and both phases shift significantly. Above that, the AO amplitude becomes greater. The annual mean potential energy profile reaches the minimum at 91 to 92 km altitude. The altitude-dependent SAO of the potential energy is found to be highly correlated with the satellite observed mean zonal winds reported in the literature.


2014 ◽  
Vol 71 (9) ◽  
pp. 3416-3426 ◽  
Author(s):  
Dave Broutman ◽  
Stephen D. Eckermann ◽  
Douglas P. Drob

Abstract A vertical eigenfunction equation is solved to examine the partial reflection and partial transmission of tsunami-generated gravity waves propagating through a height-dependent background atmosphere from the ocean surface into the lower thermosphere. There are multiple turning points for each vertical eigenfunction (at least eight in one example), yet the wave transmission into the thermosphere is significant. Examples are given for gravity wave propagation through an idealized wind jet centered near the mesopause and through a realistic vertical profile of wind and temperature relevant to the tsunami generated by the Sumatra earthquake on 26 December 2004.


2019 ◽  
Vol 19 (5) ◽  
pp. 3207-3221
Author(s):  
Xianchang Yue ◽  
Jonathan S. Friedman ◽  
Qihou Zhou ◽  
Xiongbin Wu ◽  
Jens Lautenbach

Abstract. Using 11-year-long K Doppler lidar observations of temperature profiles in the mesosphere and lower thermosphere (MLT) between 85 and 100 km, conducted at the Arecibo Observatory, Puerto Rico (18.35∘ N, 66.75∘ W), seasonal variations of mean temperature, the squared Brunt–Väisälä frequency, N2, and the gravity wave potential energy (GWPE) are estimated in a composite year. The following unique features are obtained. (1) The mean temperature structure shows similar characteristics to an earlier report based on a smaller dataset. (2) Temperature inversion layers (TILs) occur at 94–96 km in spring, at ∼92 km in summer, and at ∼91 km in early autumn. (3) The first complete range-resolved climatology of GWPE derived from temperature data in the tropical MLT exhibits an altitude-dependent combination of annual oscillation (AO) and semiannual oscillation (SAO). The maximum occurs in spring and the minimum in summer, and a second maximum is in autumn and a second minimum in winter. (4) The GWPE per unit volume reduces below ∼97 km altitude in all seasons. The reduction of GWPE is significant at and below the TILs but becomes faint above; this provides strong support for the mechanism that the formation of upper mesospheric TILs is mainly due to the reduction of GWPE. The climatology of GWPE shows an indeed pronounced altitudinal and temporal correlation with the wind field in the tropical mesopause region published in the literature. This suggests the GW activity in the tropical mesopause region should be manifested mainly by the filtering effect of the critical level of the local background wind and the energy conversion due to local dynamical instability.


Sign in / Sign up

Export Citation Format

Share Document